Ramsey results for graphs with bounded VC-dimension

Andrew Suk (UC San Diego)

February 6, 2020

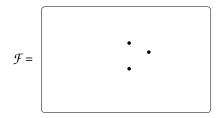
Andrew Suk (UC San Diego) Ramsey results for graphs with bounded VC-dimension

Set system
$$\mathcal{F} \subset 2^V$$
, $|V| = n$.

Definition

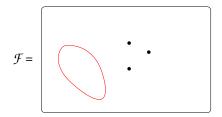
Set system
$$\mathcal{F} \subset 2^V$$
, $|V| = n$.

Definition



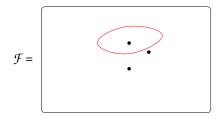
Set system
$$\mathcal{F} \subset 2^V$$
, $|V| = n$.

Definition



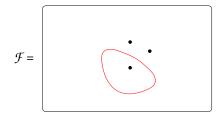
Set system
$$\mathcal{F} \subset 2^V$$
, $|V| = n$.

Definition



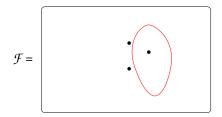
Set system
$$\mathcal{F} \subset 2^V$$
, $|V| = n$.

Definition



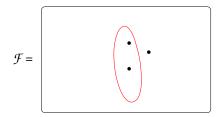
Set system
$$\mathcal{F} \subset 2^V$$
, $|V| = n$.

Definition



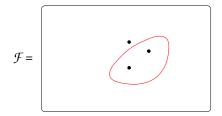
Set system
$$\mathcal{F} \subset 2^V$$
, $|V| = n$.

Definition



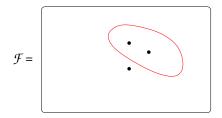
Set system
$$\mathcal{F} \subset 2^V$$
, $|V| = n$.

Definition



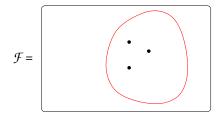
Set system
$$\mathcal{F} \subset 2^V$$
, $|V| = n$.

Definition



Set system
$$\mathcal{F} \subset 2^V$$
, $|V| = n$.

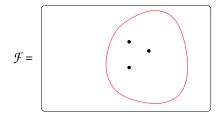
Definition



Set system $\mathcal{F} \subset 2^V$, |V| = n.

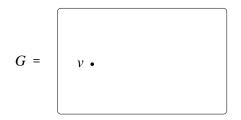
Definition

The **VC-dimension of** \mathcal{F} is the size of the largest subset $S \subset V$ that is shattered by \mathcal{F} .

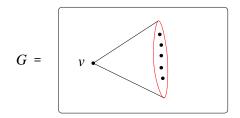


$$G = (V, E)$$
, let $\mathcal{F} \subset 2^V$ such that $\mathcal{F} = \{N(v) : v \in V\}$.
 $|V| = |\mathcal{F}| = n$

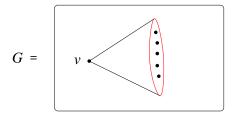
$$G = (V, E)$$
, let $\mathcal{F} \subset 2^V$ such that $\mathcal{F} = \{N(v) : v \in V\}$.
 $|V| = |\mathcal{F}| = n$



$$G = (V, E)$$
, let $\mathcal{F} \subset 2^V$ such that $\mathcal{F} = \{N(v) : v \in V\}$.
 $|V| = |\mathcal{F}| = n$



$$G = (V, E)$$
, let $\mathcal{F} \subset 2^V$ such that $\mathcal{F} = \{N(v) : v \in V\}$.
 $|V| = |\mathcal{F}| = n$



Definition

The VC-dimension of G is the VC-dimension of \mathcal{F} .

Andrew Suk (UC San Diego) Ramsey results for graphs with bounded VC-dimension

Intersection graphs of segments in the plane.

- Intersection graphs of segments in the plane.
- **2** Unit distance graph of points in \mathbb{R}^d .

- Intersection graphs of segments in the plane.
- **2** Unit distance graph of points in \mathbb{R}^d .
- **Semi-algebraic graphs** with bounded complexity.
 - $V = \text{points in } \mathbb{R}^d$
 - E = defined by bounded degree polynomial inequalities.

- Intersection graphs of segments in the plane.
- **2** Unit distance graph of points in \mathbb{R}^d .
- **Semi-algebraic graphs** with bounded complexity.
 - $V = \text{points in } \mathbb{R}^d$
 - E = defined by bounded degree polynomial inequalities.
- Intersection graph of pseudo-segments in the plane.

- Intersection graphs of segments in the plane.
- **2** Unit distance graph of points in \mathbb{R}^d .
- **Semi-algebraic graphs** with bounded complexity.
 - $V = \text{points in } \mathbb{R}^d$
 - E = defined by bounded degree polynomial inequalities.
- Intersection graph of pseudo-segments in the plane.

Problem

Can we substantially improve some of the classical theorems in extremal graph theory for graphs with bounded VC-dimension?

Ramsey's Theorem. Every graph on *n* vertices contains a clique or independent set of size *c* log *n*.

2 Turán's Theorem. Every $K_{2,2}$ -free graph on *n* vertices has at most $cn^{3/2}$ edges.

Szemerédi's regularity lemma.

- Ramsey's Theorem. Every graph on *n* vertices contains a clique or independent set of size *c* log *n*.
 - Semi-algbraic graphs: Improve to n^c.
- **2** Turán's Theorem. Every $K_{2,2}$ -free graph on *n* vertices has at most $cn^{3/2}$ edges.
 - Semi-algbraic graphs: Improve to $O(n^{3/2-\varepsilon})$.
- Szemerédi's regularity lemma.
 - Semi-algbraic graphs: Quantitative and qualitative improvements.

An application of the Milnor-Thom theorem:

Theorem

There are at most $2^{cn \log n}$ semi-algebraic graphs on n vertices and with complexity at most d, where c = c(d).

Theorem (Anthony, Brightwell, Cooper 1995)

There are at least $2^{n^{2-\varepsilon}}$ graphs with VC-dimension at most d on n vertices, where $\varepsilon = \varepsilon(d)$.

- **2** Turán's Theorem. Every $K_{2,2}$ -free graph on *n* vertices has at most $cn^{3/2}$ edges.
 - Semi-algbraic graphs: Improve to $O(n^{3/2-\varepsilon})$.

- Turán's Theorem. Every K_{2,2}-free graph on *n* vertices has at most cn^{3/2} edges.
 - Semi-algbraic graphs. Improve to $O(n^{3/2-\varepsilon})$.
 - **Bounded VC-dimension.** No improvement. There are $K_{2,2}$ -free graphs on *n* vertices with $\Omega(n^{3/2})$ edges.

In joint work with Jacob Fox and János Pach

- We find large cliques or independent sets in graphs with bounded VC-dimension.
- We find large monochromatic cliques in multi-colored graphs with bounded VC-dimension.

In joint work with Jacob Fox and János Pach

- We find large cliques or independent sets in graphs with bounded VC-dimension (Erdős-Hajnal conjecture).
- We find large monochromatic cliques in multi-colored graphs with bounded VC-dimension.

Theorem (Erdős-Szekeres 1935)

Every graph on n-vertices contains a clique or and independent set of size $\Omega(\log n) \approx e^{\log \log n}$.

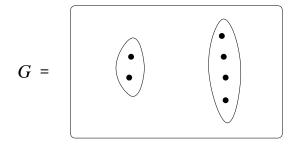
Theorem (Erdős-Hajnal 1989)

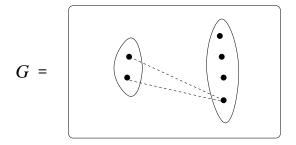
For every (fixed) graph H, there is a constant c = c(H) such that the following holds. Every graph on n-vertices that does not contain H as an induced subgraph contains a clique or and independent set of size $e^{c\sqrt{\log n}}$.

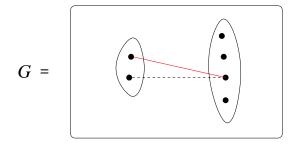
Conjecture (Erdős-Hajnal): Improve this to n^c , where c = c(H).

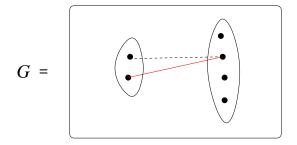
- H = forbidden induced graphs. The Erdős-Hajnal conjecture holds for
 - *H* with at most 3 vertices.
 - H has 4 vertices (Gyárfás 1997).
 - S "blow ups" (Alon-Pach-Solymosi 2001)
 - *H* is a bull (5 vertices, 5 edges, Chudnovsky-Safra 2008)

OPEN: $H = C_5$. Recently improved to $e^{c\sqrt{\log n \log \log n}}$ by Chudnovsky-Fox-Scott-Seymour-Spirkl.

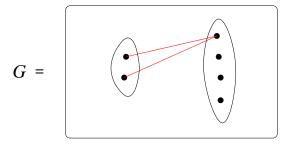




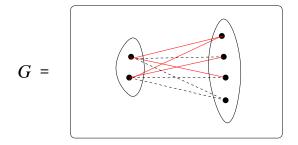




Let G = (V, E), |V| = n, with VC-dimension less than d.



Let G = (V, E), |V| = n, with VC-dimension less than d.



Let G = (V, E), |V| = n, with VC-dimension less than d.



There is a graph H on $d + 2^d$ vertices such that H is not an induced subgraph of G.

Theorem (Erdős-Hajnal 1989)

For every (fixed) graph H, there is a constant c = c(H) such that the following holds. Every graph on n-vertices that does not contain H as an induced subgraph contains a clique or and independent set of size $e^{c\sqrt{\log n}}$.

Corollary

For every n-vertex graph with VC-dimension at most d contains a clique or independent set of size $e^{c\sqrt{\log n}}$, where c = c(d).

Conjecture: Improve the result above to $n^c = e^{c \log n}$, where c = c(d).

Theorem (Erdős-Hajnal 1989)

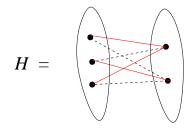
For every (fixed) graph H, there is a constant c = c(H) such that the following holds. Every graph on n-vertices that does not contain H as an induced subgraph contains a clique or and independent set of size $e^{c\sqrt{\log n}}$.

Theorem (Fox-Pach-S. 2019)

For every n-vertex graph with VC-dimension at most d contains a clique or independent set of size $e^{(\log n)^{1-o(1)}}$.

Here,
$$o(1) = c \frac{\log d}{\log \log n}$$
.

Let H be a bipartite graph, |V(H)| = k.

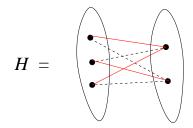


Corollary (Fox-Pach-S. 2019)

Let H be a fixed bipartite graph. Then every n-vertex graph that does not contain H as an induced bipartite graph, contains a clique or independent set of size $e^{(\log n)^{1-o(1)}}$.

Proof: *G* has VC-dimension at most d = d(H).

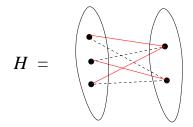
Let H be a bipartite graph, |V(H)| = k.



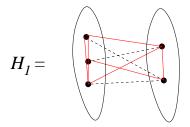
Corollary (Fox-Pach-S. 2019)

Let H be a fixed bipartite graph. Then every n-vertex graph that does not contain H as an induced bipartite graph, contains a clique or independent set of size $e^{(\log n)^{1-o(1)}}$.

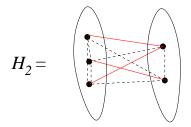
Note: We are forbidding $2^{O(k^2)}$ induced subgraphs.



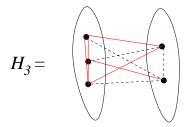
Corollary (Fox-Pach-S. 2019)



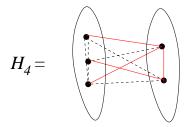
Corollary (Fox-Pach-S. 2019)



Corollary (Fox-Pach-S. 2019)



Corollary (Fox-Pach-S. 2019)

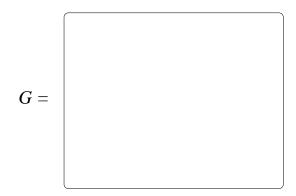


Corollary (Fox-Pach-S. 2019)

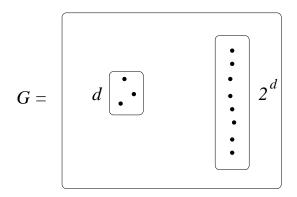
Let H be a fixed bipartite graph. Then every n-vertex graph that does not contain H_1, H_2, H_3, H_4 as an induced subgraph, contains a clique or independent set of size $e^{(\log n)^{1-o(1)}}$.

Proof: G has VC-dimension less than d = d(H).

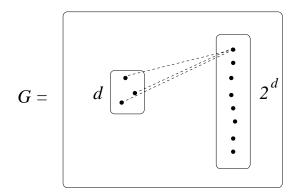
Let H be a fixed bipartite graph. Then every n-vertex graph that does not contain H_1, H_2, H_3, H_4 as an induced subgraph, contains a clique or independent set of size $e^{(\log n)^{1-o(1)}}$.



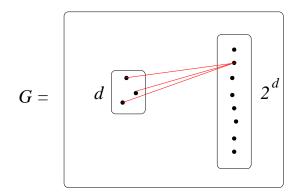
Let H be a fixed bipartite graph. Then every n-vertex graph that does not contain H_1, H_2, H_3, H_4 as an induced subgraph, contains a clique or independent set of size $e^{(\log n)^{1-o(1)}}$.



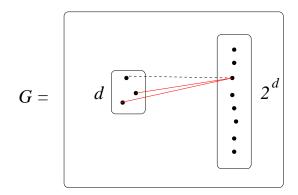
Let H be a fixed bipartite graph. Then every n-vertex graph that does not contain H_1, H_2, H_3, H_4 as an induced subgraph, contains a clique or independent set of size $e^{(\log n)^{1-o(1)}}$.



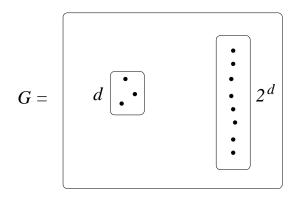
Let H be a fixed bipartite graph. Then every n-vertex graph that does not contain H_1, H_2, H_3, H_4 as an induced subgraph, contains a clique or independent set of size $e^{(\log n)^{1-o(1)}}$.



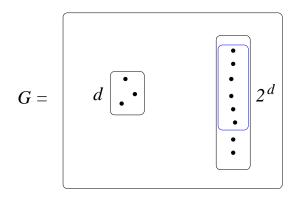
Let H be a fixed bipartite graph. Then every n-vertex graph that does not contain H_1, H_2, H_3, H_4 as an induced subgraph, contains a clique or independent set of size $e^{(\log n)^{1-o(1)}}$.



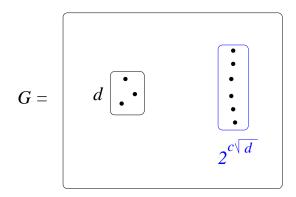
Let H be a fixed bipartite graph. Then every n-vertex graph that does not contain H_1, H_2, H_3, H_4 as an induced subgraph, contains a clique or independent set of size $e^{(\log n)^{1-o(1)}}$.



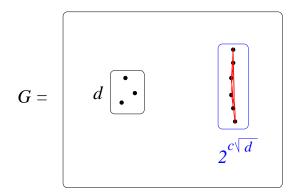
Let H be a fixed bipartite graph. Then every n-vertex graph that does not contain H_1, H_2, H_3, H_4 as an induced subgraph, contains a clique or independent set of size $e^{(\log n)^{1-o(1)}}$.



Let H be a fixed bipartite graph. Then every n-vertex graph that does not contain H_1, H_2, H_3, H_4 as an induced subgraph, contains a clique or independent set of size $e^{(\log n)^{1-o(1)}}$.

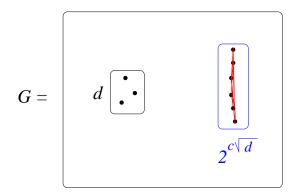


Let H be a fixed bipartite graph. Then every n-vertex graph that does not contain H_1, H_2, H_3, H_4 as an induced subgraph, contains a clique or independent set of size $e^{(\log n)^{1-o(1)}}$.



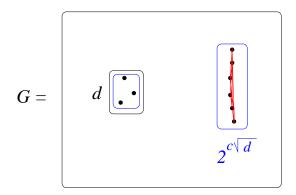
Let H be a fixed bipartite graph. Then every n-vertex graph that does not contain H_1, H_2, H_3, H_4 as an induced subgraph, contains a clique or independent set of size $e^{(\log n)^{1-o(1)}}$.

Proof: Sauer-Shelah: $|\mathcal{F}| > c|V|^k$ implies k-set shattered.



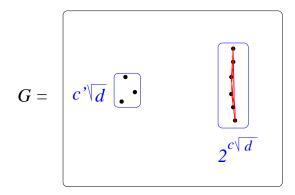
Let H be a fixed bipartite graph. Then every n-vertex graph that does not contain H_1, H_2, H_3, H_4 as an induced subgraph, contains a clique or independent set of size $e^{(\log n)^{1-o(1)}}$.

Proof: Sauer-Shelah: $|\mathcal{F}| > c|V|^k$ implies k-set shattered.

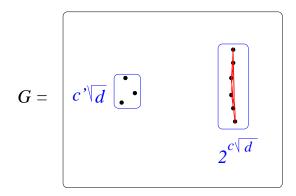


Let H be a fixed bipartite graph. Then every n-vertex graph that does not contain H_1, H_2, H_3, H_4 as an induced subgraph, contains a clique or independent set of size $e^{(\log n)^{1-o(1)}}$.

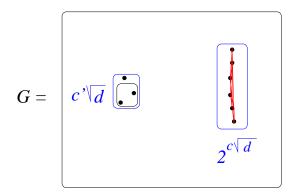
Proof: $c'\sqrt{d}$ vertices are shattered.



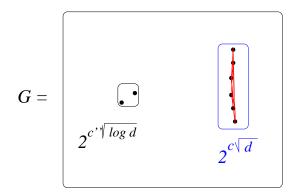
Let H be a fixed bipartite graph. Then every n-vertex graph that does not contain H_1, H_2, H_3, H_4 as an induced subgraph, contains a clique or independent set of size $e^{(\log n)^{1-o(1)}}$.



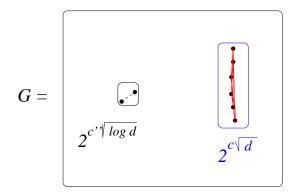
Let H be a fixed bipartite graph. Then every n-vertex graph that does not contain H_1, H_2, H_3, H_4 as an induced subgraph, contains a clique or independent set of size $e^{(\log n)^{1-o(1)}}$.



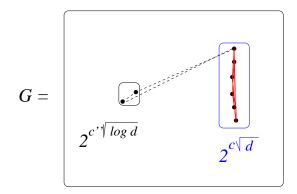
Let H be a fixed bipartite graph. Then every n-vertex graph that does not contain H_1, H_2, H_3, H_4 as an induced subgraph, contains a clique or independent set of size $e^{(\log n)^{1-o(1)}}$.



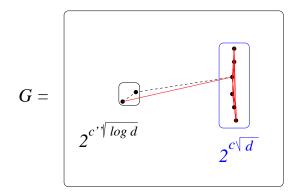
Let H be a fixed bipartite graph. Then every n-vertex graph that does not contain H_1, H_2, H_3, H_4 as an induced subgraph, contains a clique or independent set of size $e^{(\log n)^{1-o(1)}}$.



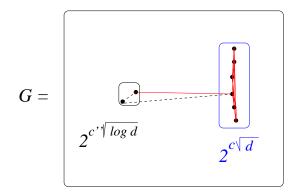
Let H be a fixed bipartite graph. Then every n-vertex graph that does not contain H_1, H_2, H_3, H_4 as an induced subgraph, contains a clique or independent set of size $e^{(\log n)^{1-o(1)}}$.



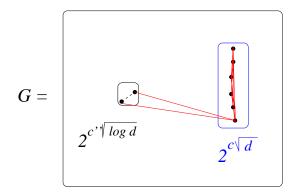
Let H be a fixed bipartite graph. Then every n-vertex graph that does not contain H_1, H_2, H_3, H_4 as an induced subgraph, contains a clique or independent set of size $e^{(\log n)^{1-o(1)}}$.



Let H be a fixed bipartite graph. Then every n-vertex graph that does not contain H_1, H_2, H_3, H_4 as an induced subgraph, contains a clique or independent set of size $e^{(\log n)^{1-o(1)}}$.

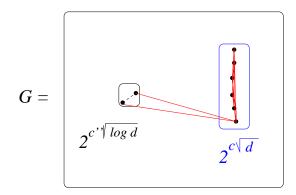


Let H be a fixed bipartite graph. Then every n-vertex graph that does not contain H_1, H_2, H_3, H_4 as an induced subgraph, contains a clique or independent set of size $e^{(\log n)^{1-o(1)}}$.



Let H be a fixed bipartite graph. Then every n-vertex graph that does not contain H_1, H_2, H_3, H_4 as an induced subgraph, contains a clique or independent set of size $e^{(\log n)^{1-o(1)}}$.

Proof: For large d = d(H), we obtain H_1, H_2, H_3 , or H_4 .



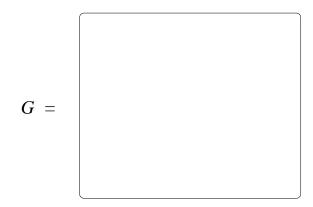
Theorem (Fox-Pach-S. 2019)

For every n-vertex graph with VC-dimension at most d contains a clique or independent set of size $e^{(\log n)^{1-o(1)}}$.

Theorem (Fox-Pach-S. 2019)

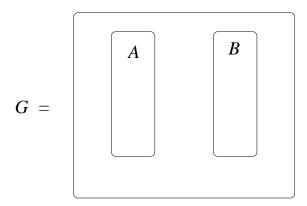
For every n-vertex graph with VC-dimension at most d contains a clique or independent set of size $e^{(\log n)^{1-o(1)}}$.

Proof idea. (Erdős-Hajnal) G is H induced free. Use induction to find a large perfect subgraph.



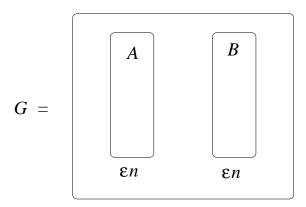
For every n-vertex graph with VC-dimension at most d contains a clique or independent set of size $e^{(\log n)^{1-o(1)}}$.

Proof idea. (Erdős-Hajnal) Lemma: $\exists A, B \subset V$



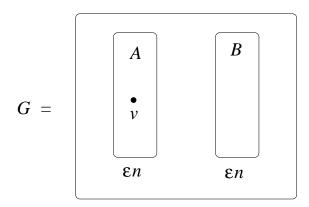
For every n-vertex graph with VC-dimension at most d contains a clique or independent set of size $e^{(\log n)^{1-o(1)}}$.

Proof idea. (Erdős-Hajnal) Lemma: $\exists A, B \subset V$



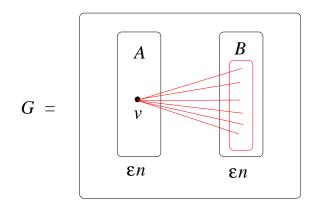
For every n-vertex graph with VC-dimension at most d contains a clique or independent set of size $e^{(\log n)^{1-o(1)}}$.

Proof idea. (Erdős-Hajnal) Lemma: $\exists A, B \subset V$



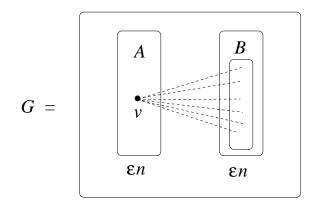
For every n-vertex graph with VC-dimension at most d contains a clique or independent set of size $e^{(\log n)^{1-o(1)}}$.

Proof idea. (Erdős-Hajnal) $v \in A$, $|N(v) \cap B| > (1 - \varepsilon)|B|$ or $|N(v) \cap B| < \varepsilon|B|$



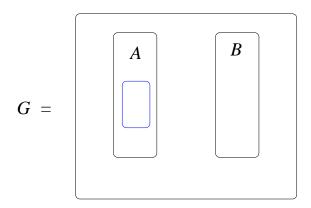
For every n-vertex graph with VC-dimension at most d contains a clique or independent set of size $e^{(\log n)^{1-o(1)}}$.

Proof idea. (Erdős-Hajnal) $v \in A$, $|N(v) \cap B| > (1 - \varepsilon)|B|$ or $|N(v) \cap B| < \varepsilon|B|$



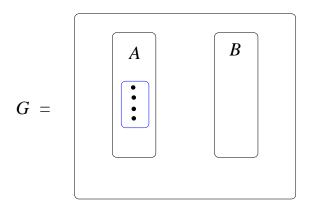
For every n-vertex graph with VC-dimension at most d contains a clique or independent set of size $e^{(\log n)^{1-o(1)}}$.

Proof idea. (Erdős-Hajnal) Apply induction in A.



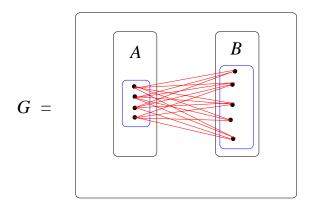
For every n-vertex graph with VC-dimension at most d contains a clique or independent set of size $e^{(\log n)^{1-o(1)}}$.

Proof idea. (Erdős-Hajnal) Apply induction in A.



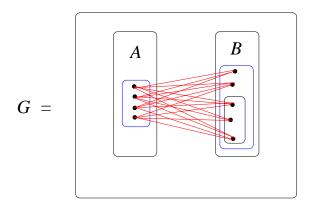
For every n-vertex graph with VC-dimension at most d contains a clique or independent set of size $e^{(\log n)^{1-o(1)}}$.

Proof idea. (Erdős-Hajnal) Apply induction in A.



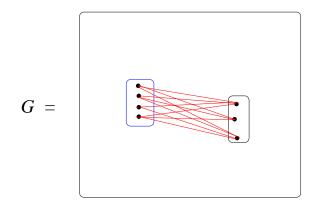
For every n-vertex graph with VC-dimension at most d contains a clique or independent set of size $e^{(\log n)^{1-o(1)}}$.

Proof idea. (Erdős-Hajnal) Apply induction in *B*.



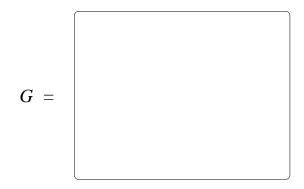
For every n-vertex graph with VC-dimension at most d contains a clique or independent set of size $e^{(\log n)^{1-o(1)}}$.

Proof idea. (Erdős-Hajnal) Apply induction in *B*. Combine to get a large perfect graph.



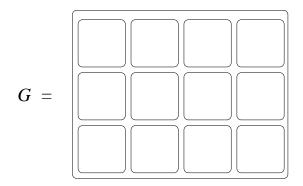
For every n-vertex graph with VC-dimension at most d contains a clique or independent set of size $e^{(\log n)^{1-o(1)}}$.

Proof idea. *G* has bounded VC-dimension.



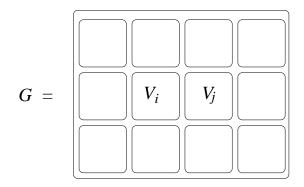
For every n-vertex graph with VC-dimension at most d contains a clique or independent set of size $e^{(\log n)^{1-o(1)}}$.

Proof idea. Apply a strong regularity lemma.



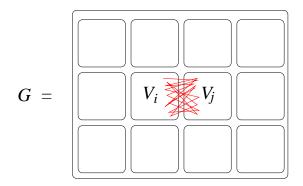
For every n-vertex graph with VC-dimension at most d contains a clique or independent set of size $e^{(\log n)^{1-o(1)}}$.

Proof idea. Apply a strong regularity lemma.



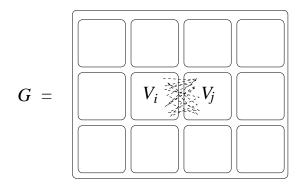
For every n-vertex graph with VC-dimension at most d contains a clique or independent set of size $e^{(\log n)^{1-o(1)}}$.

Proof idea. At least $(1 - \varepsilon)|V_i||V_j|$ edges



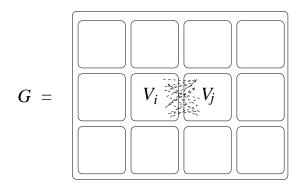
For every n-vertex graph with VC-dimension at most d contains a clique or independent set of size $e^{(\log n)^{1-o(1)}}$.

Proof idea. Less than $\varepsilon |V_i| |V_j|$ edges



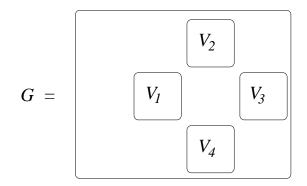
For every n-vertex graph with VC-dimension at most d contains a clique or independent set of size $e^{(\log n)^{1-o(1)}}$.

Proof idea. True for all but an ε -fraction pairs of parts.



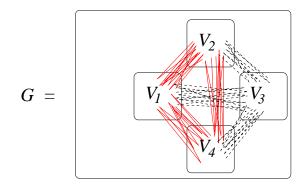
For every n-vertex graph with VC-dimension at most d contains a clique or independent set of size $e^{(\log n)^{1-o(1)}}$.

Proof idea. Apply Turan's theorem



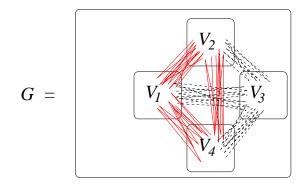
For every n-vertex graph with VC-dimension at most d contains a clique or independent set of size $e^{(\log n)^{1-o(1)}}$.

Proof idea. Apply Turan's theorem



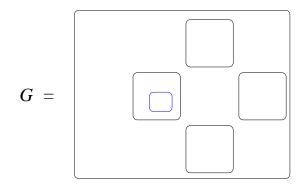
For every n-vertex graph with VC-dimension at most d contains a clique or independent set of size $e^{(\log n)^{1-o(1)}}$.

Proof idea. Follow the Erdős-Hajnal argument with many parts.



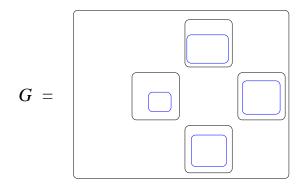
For every n-vertex graph with VC-dimension at most d contains a clique or independent set of size $e^{(\log n)^{1-o(1)}}$.

Proof idea. Apply induction inside one of the parts.



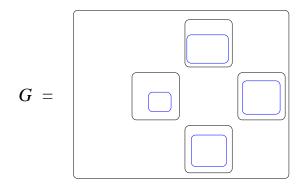
For every n-vertex graph with VC-dimension at most d contains a clique or independent set of size $e^{(\log n)^{1-o(1)}}$.

Proof idea. Complete or empty bipartite graphs.



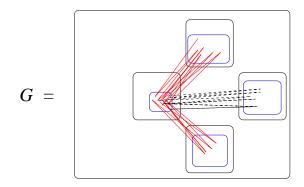
For every n-vertex graph with VC-dimension at most d contains a clique or independent set of size $e^{(\log n)^{1-o(1)}}$.

Proof idea. Complete or empty bipartite graphs.



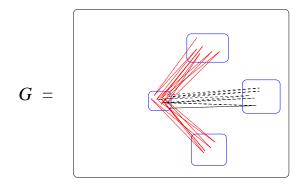
For every n-vertex graph with VC-dimension at most d contains a clique or independent set of size $e^{(\log n)^{1-o(1)}}$.

Proof idea. Complete or empty bipartite graphs.



For every n-vertex graph with VC-dimension at most d contains a clique or independent set of size $e^{(\log n)^{1-o(1)}}$.

Proof idea. Repeat the argument.



In joint work with Jacob Fox and János Pach

- We find large cliques or independent sets in graphs with bounded VC-dimension (Erdős-Hajnal conjecture).
- We find large monochromatic cliques in multi-colored graphs with bounded VC-dimension.

In joint work with Jacob Fox and János Pach

- We find large cliques or independent sets in graphs with bounded VC-dimension (Erdős-Hajnal conjecture).
- We find large monochromatic cliques in multi-colored graphs with bounded VC-dimension (Schur-Erdős conjecture).

Multicolor Ramsey numbers

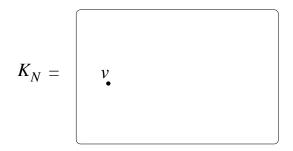
Color all edges of K_N with m colors.

Question: How large does N have to be to guarantee a monochromatic K_3 ?

Multicolor Ramsey numbers

Color all edges of K_N with m colors.

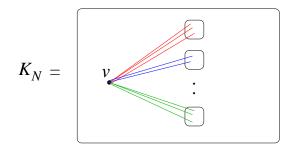
Question: How large does N have to be to guarantee a monochromatic K_3 ?



Multicolor Ramsey numbers

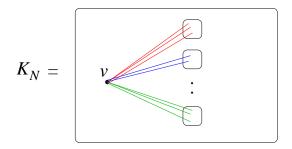
Color all edges of K_N with m colors.

Question: How large does N have to be to guarantee a monochromatic K_3 ?



Color all edges of K_N with m colors.

Question: How large does N have to be to guarantee a monochromatic K_3 ?



Notation: $N_i(v) = \{u \in V : \chi(uv) = i\}.$

Definition

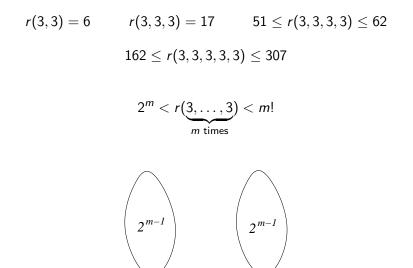
For $m \ge 2$, The multicolor Ramsey number

is the minimum integer N such that for any *m*-coloring of the edges of K_N contains a monochromatic copy of K_3 .

$$r(3,3) = 6$$
 $r(3,3,3) = 17$ $51 \le r(3,3,3,3) \le 62$
 $162 \le r(3,3,3,3,3) \le 307$
 $2^m < r(3,\ldots,3) < m!$

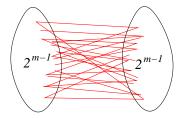
m times

Known results

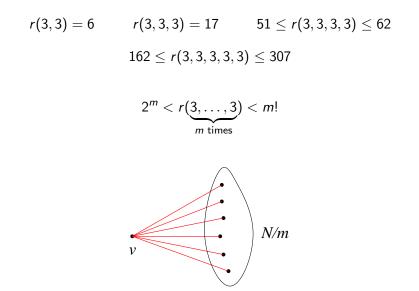


Known results

$$r(3,3) = 6 \qquad r(3,3,3) = 17 \qquad 51 \le r(3,3,3,3) \le 62$$
$$162 \le r(3,3,3,3,3) \le 307$$
$$2^m < r(\underbrace{3,\ldots,3}_{m \text{ times}}) < m!$$



Known results



Lower bound: Fredricksen-Sweet, Abbot-Moser. Upper bound: Schur.

$$(3.199)^m < r(\underbrace{3, \dots, 3}_{m \text{ times}}) < 2^{O(m \log m)}$$

Erdős prize problems

Problem (\$100)

Is the limit below finite or infinite?

$$\lim_{m\to\infty} \left(r(\underbrace{3,\ldots,3}_{m \text{ times}}) \right)^{1/m}$$

Problem (\$250)

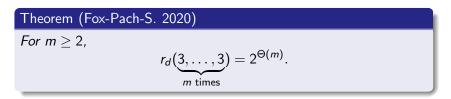
Determine

$$\lim_{m\to\infty} \left(r(\underbrace{3,\ldots,3}_{m \text{ times}}) \right)^{1/m}$$

If we insist that the *m*-coloring has bounded VC-dimension:

$$\mathcal{F} = \{N_i(v) : v \in V, i \in [m]\}$$

 \mathcal{F} has VC-dimension at most d = O(1).



If we insist that the m-coloring has bounded VC-dimension:

$$\mathcal{F} = \{N_i(v) : v \in V, i \in [m]\}$$

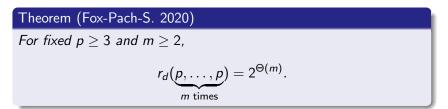
 \mathcal{F} has VC-dimension at most d = O(1).

Theorem (Fox-Pach-S. 2020) For fixed $p \ge 3$ and $m \ge 2$, $r_d(p, \dots, p) = 2^{\Theta(m)}$. m times

If we insist that the m-coloring has bounded VC-dimension:

$$\mathcal{F} = \{N_i(v) : v \in V, i \in [m]\}$$

 \mathcal{F} has VC-dimension at most d = O(1).



Proof idea: Use a different partition result based on Haussler's packing lemma.

- **1** Is the Erdős-Hajnal conjecture true for string graphs.
- **②** Find more results for graphs with bounded VC dimension.

Thank you!