Cliques and sunflowers under bounded VC-dimension

Andrew Suk (UC San Diego)

March 28, 2021

Definition: VC-dimension

Set system $\mathcal{F} \subset 2^V$.

Definition

A set $S \subset V$ is **shattered** by \mathcal{F} if for all $X \subset S$, there is an $A \in \mathcal{F}$ such that $S \cap A = X$.

Definition

The **VC-dimension of** \mathcal{F} is the size of the largest subset $S \subset V$ that is shattered by \mathcal{F} .

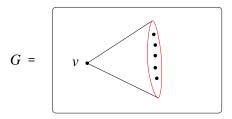
$$G = (V, E)$$
, let $\mathcal{F} \subset 2^V$ such that $\mathcal{F} = \{N(v) : v \in V\}$.

$$G$$
 =

$$G = (V, E)$$
, let $\mathcal{F} \subset 2^V$ such that $\mathcal{F} = \{N(v) : v \in V\}$. $|V| = |\mathcal{F}| = n$

$$G = \begin{pmatrix} v & \bullet \end{pmatrix}$$

$$G = (V, E)$$
, let $\mathcal{F} \subset 2^V$ such that $\mathcal{F} = \{N(v) : v \in V\}$. $|V| = |\mathcal{F}| = n$



$$G = (V, E)$$
, let $\mathcal{F} \subset 2^V$ such that $\mathcal{F} = \{N(v) : v \in V\}$. $|V| = |\mathcal{F}| = n$

$$G =$$
 $v \leftarrow$

Definition

The VC-dimension of G is the VC-dimension of \mathcal{F} .

Intersection graphs of segments in the plane.

- Intersection graphs of segments in the plane.
- ② Unit distance graph of points in \mathbb{R}^d .

- 1 Intersection graphs of segments in the plane.
- ② Unit distance graph of points in \mathbb{R}^d .
- 3 Semi-algebraic graphs with bounded complexity.
 - $V = \text{points in } \mathbb{R}^d$
 - \bullet E= defined by bounded degree polynomial inequalities.

- 1 Intersection graphs of segments in the plane.
- ② Unit distance graph of points in \mathbb{R}^d .
- Semi-algebraic graphs with bounded complexity.
 - $V = \text{points in } \mathbb{R}^d$
 - \bullet E = defined by bounded degree polynomial inequalities.
- Intersection graph of pseudo-segments in the plane.

- 1 Intersection graphs of segments in the plane.
- ② Unit distance graph of points in \mathbb{R}^d .
- 3 Semi-algebraic graphs with bounded complexity.
 - $V = \text{points in } \mathbb{R}^d$
 - \bullet E = defined by bounded degree polynomial inequalities.
- Intersection graph of pseudo-segments in the plane.

Problem

Can we substantially improve some of the classical theorems in extremal graph theory for graphs with bounded VC-dimension?

Quantification Quantification Quan

2 Turán's Theorem. Every $K_{2,2}$ -free graph on n vertices has at most $cn^{3/2}$ edges.

3 Szemerédi's regularity lemma.

- Ramsey's Theorem. Every graph on *n* vertices contains a clique or independent set of size *c* log *n*.
 - Semi-algebraic graphs: Improve to n^c .
- **2 Turán's Theorem.** Every $K_{2,2}$ -free graph on n vertices has at most $cn^{3/2}$ edges.
 - Semi-algebraic graphs: Improve to $O(n^{3/2-\varepsilon})$.
- 3 Szemerédi's regularity lemma.
 - Semi-algebraic graphs: Quantitative and qualitative improvements.

- **Ramsey's Theorem.** Every graph on *n* vertices contains a clique or independent set of size *c* log *n*.
 - Semi-algebraic graphs: Improve to n^c .
- **2 Turán's Theorem.** Every $K_{2,2}$ -free graph on n vertices has at most $cn^{3/2}$ edges.
 - Semi-algebraic graphs: Improve to $O(n^{3/2-\varepsilon})$.
- 3 Szemerédi's regularity lemma.
 - Semi-algebraic graphs: Quantitative and qualitative improvements.

Problem

Can we improve these classical results for graphs with bounded VC-dimension?

Semi-algebraic vs VC-dimension

An application of the Milnor-Thom theorem:

Theorem

There are at most $2^{cn \log n}$ semi-algebraic graphs on n vertices and with complexity at most d, where c = c(d).

Theorem (Anthony, Brightwell, Cooper 1995)

There are at least $2^{n^{2-\varepsilon}}$ graphs with VC-dimension at most d on n vertices, where $\varepsilon = \varepsilon(d)$.

- **2 Turán's Theorem.** Every $K_{2,2}$ -free graph on n vertices has at most $cn^{3/2}$ edges.
 - Semi-algebraic graphs: Improve to $O(n^{3/2-\varepsilon})$.

- **2 Turán's Theorem.** Every $K_{2,2}$ -free graph on n vertices has at most $cn^{3/2}$ edges.
 - Semi-algebraic graphs. Improve to $O(n^{3/2-\varepsilon})$.
 - **Bounded VC-dimension.** No improvement. There are $K_{2,2}$ -free graphs on n vertices with $\Omega(n^{3/2})$ edges.

First main result

In joint work with Jacob Fox and János Pach

 We establish tight bounds for multicolor Ramsey numbers for graphs with bounded VC-dimension.

Multicolor Ramsey numbers

Definition

For $m \ge 2$, The multicolor Ramsey number

$$r(\underbrace{3,\ldots,3}_{m \text{ times}})$$

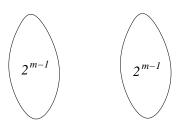
is the minimum integer N such that for any m-coloring of the edges of K_N contains a monochromatic copy of K_3 .

$$r(3,3) = 6$$
 $r(3,3,3) = 17$ $51 \le r(3,3,3,3) \le 62$ $162 \le r(3,3,3,3,3) \le 307$ $2^m < r(3,\ldots,3) < m!$

m times

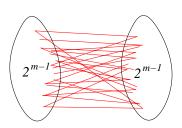
$$r(3,3) = 6$$
 $r(3,3,3) = 17$ $51 \le r(3,3,3,3) \le 62$ $162 \le r(3,3,3,3,3) \le 307$

$$2^m < r(\underbrace{3, \dots, 3}_{m \text{ times}}) < m!$$



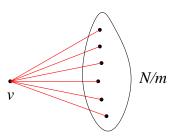
$$r(3,3) = 6$$
 $r(3,3,3) = 17$ $51 \le r(3,3,3,3) \le 62$ $162 \le r(3,3,3,3,3) \le 307$

$$2^m < r(\underbrace{3,\ldots,3}_{m \text{ times}}) < m!$$



$$r(3,3) = 6$$
 $r(3,3,3) = 17$ $51 \le r(3,3,3,3) \le 62$
 $162 \le r(3,3,3,3,3) \le 307$

$$2^m < r(\underbrace{3, \dots, 3}_{m \text{ times}}) < m!$$



Lower bound: Fredricksen-Sweet, Abbot-Moser.

Upper bound: Schur.

$$(3.199)^m < r(\underbrace{3,\ldots,3}_{m \text{ times}}) < 2^{O(m \log m)}$$

Lower bound: Fredricksen-Sweet, Abbot-Moser.

Upper bound: Schur.

$$(3.199)^m < r(\underbrace{3,\ldots,3}_{m \text{ times}}) < 2^{O(m \log m)}$$

Conjecture (Schur-Erdős)

$$r(\underbrace{3,\ldots,3}_{m \text{ times}})=2^{\Theta(m)}.$$

Lower bound: Fredricksen-Sweet, Abbot-Moser.

Upper bound: Schur.

$$(3.199)^m < r(\underbrace{3, \dots, 3}_{m \text{ times}}) < 2^{O(m \log m)}$$

Conjecture (Schur-Erdős)

$$r(\underbrace{3,\ldots,3}_{m \text{ times}})=2^{\Theta(m)}.$$

Theorem (Fox-Pach-S., 2020)

The conjecture of true for semi-algebraic colorings with bounded complexity.

Lower bound: Fredricksen-Sweet, Abbot-Moser.

Upper bound: Schur.

$$(3.199)^m < r(\underbrace{3, \dots, 3}_{m \text{ times}}) < 2^{O(m \log m)}$$

Conjecture (Schur-Erdős)

$$r(\underbrace{3,\ldots,3}_{m \text{ times}})=2^{\Theta(m)}.$$

Theorem (Fox-Pach-S., 2021)

The conjecture holds is true for colorings with bounded VC-dimension.

Bounded VC-dimension setting

Color all edges of K_N with m colors.

$$K_N =$$

Bounded VC-dimension setting

Color all edges of K_N with m colors.

$$K_N = \begin{bmatrix} v \\ \bullet \end{bmatrix}$$

Bounded VC-dimension setting

Color all edges of K_N with m colors.

Notation:
$$N_i(v) = \{u \in V : \chi(uv) = i\}.$$

First main result

If we insist that the *m*-coloring has bounded VC-dimension:

$$\mathcal{F} = \{N_i(v) : v \in V, i \in [m]\}$$

 \mathcal{F} has VC-dimension at most d = O(1).

Theorem (Fox-Pach-S. 2021)

For $m \geq 2$,

$$r_d(\underbrace{3,\ldots,3}_{m \text{ times}})=2^{\Theta(m)}.$$

First main result

If we insist that the *m*-coloring has bounded VC-dimension:

$$\mathcal{F} = \{N_i(v) : v \in V, i \in [m]\}$$

 \mathcal{F} has VC-dimension at most d = O(1).

Theorem (Fox-Pach-S. 2021)

For fixed $p \ge 3$ and $m \ge 2$,

$$r_d(\underbrace{p,\ldots,p}_{m \text{ times}})=2^{\Theta(m)}.$$

Main result

If we insist that the *m*-coloring has bounded VC-dimension:

$$\mathcal{F} = \{N_i(v) : v \in V, i \in [m]\}$$

 \mathcal{F} has VC-dimension at most d = O(1).

Theorem (Fox-Pach-S. 2021)

For fixed $p \ge 3$ and $m \ge 2$,

$$r_d(\underbrace{p,\ldots,p}_{m \text{ times}})=2^{\Theta(m)}.$$

Sketch of the proof:

$$r_d(\underbrace{3,\ldots,3}_{m \text{ times}}) \le 2^{cm}, \qquad c = c(d)$$

Idea: We will use induction on m. Set $N=2^{cm}$ and let V be an N-element vertex set.

$$\chi: \binom{V}{2} \to \{1, 2, \dots, m\}$$
 and $\mathcal{F} = \{N_i(v) : v \in V, i \in [m]\}.$

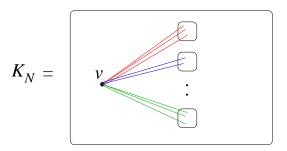
$$K_N =$$

Sketch of the proof:

$$r_d(\underbrace{3,\ldots,3}_{m \text{ times}}) \le 2^{cm}, \qquad c = c(d)$$

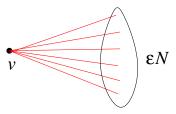
Idea: We will use induction on m. Set $N = 2^{cm}$ and let V be an N-element vertex set.

$$\chi: {V \choose 2} \to \{1, 2, \dots, m\}$$
 and $\mathcal{F} = \{N_i(v) : v \in V, i \in [m]\}.$



Sketch of the proof:

Goal: $\exists v \in V$ such that $|N_i(v)| \ge \epsilon N$ for some i.



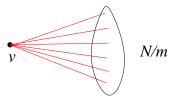
$$|N_i(v)| \ge \epsilon N > 2^{c(m-1)}.$$

Sketch of the proof:

Goal: $\exists v \in V$ such that $|N_i(v)| \ge \epsilon N$ for some i.

$$|N_i(v)| \ge \epsilon N > 2^{c(m-1)}.$$

Not true: We can only assume $|N_i(v)| \ge N/m$ by pigeonhole.



Crossing pairs of vertices

$$\mathcal{F} = \{N_i(v) : v \in V, i \in [m]\}.$$

Crossing: Let $A \in \mathcal{F}$ and $u, v \in V$. Then A crosses $\{u, v\}$ if it contains one but not the other.

$$K_N =$$

Crossing pairs of vertices

$$\mathcal{F} = \{N_i(v) : v \in V, i \in [m]\}.$$

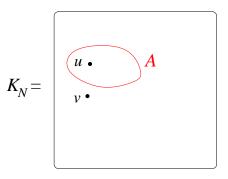
Crossing: Let $A \in \mathcal{F}$ and $u, v \in V$. Then A crosses $\{u, v\}$ if it contains one but not the other.

$$K_N = \begin{pmatrix} u \cdot \\ v \cdot \end{pmatrix}$$

Crossing pairs of vertices

$$\mathcal{F} = \{N_i(v) : v \in V, i \in [m]\}.$$

Crossing: Let $A \in \mathcal{F}$ and $u, v \in V$. Then A crosses $\{u, v\}$ if it contains one but not the other.



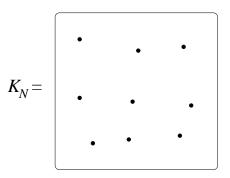
 $\mathcal{F} = \{N_i(v) : v \in V, i \in [m]\}$, dual VC-dimension d.

Lemma

$$K_N =$$

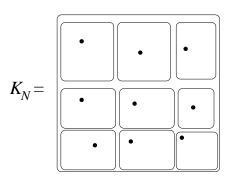
 $\mathcal{F} = \{N_i(v) : v \in V, i \in [m]\}, \text{ dual VC-dimension } d.$

Lemma



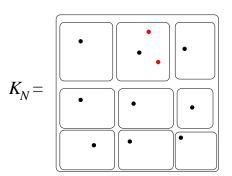
 $\mathcal{F} = \{N_i(v) : v \in V, i \in [m]\}, \text{ dual VC-dimension } d.$

Lemma



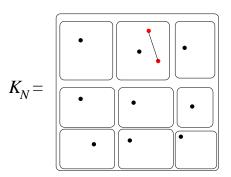
 $\mathcal{F} = \{N_i(v) : v \in V, i \in [m]\}, \text{ dual VC-dimension } d.$

Lemma



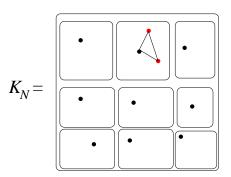
 $\mathcal{F} = \{N_i(v) : v \in V, i \in [m]\}, \text{ dual VC-dimension } d.$

Lemma



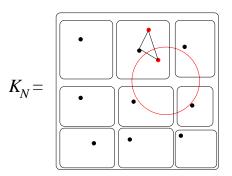
 $\mathcal{F} = \{N_i(v) : v \in V, i \in [m]\}, \text{ dual VC-dimension } d.$

Lemma

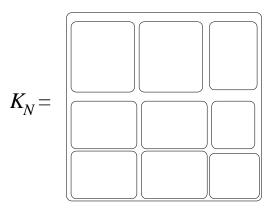


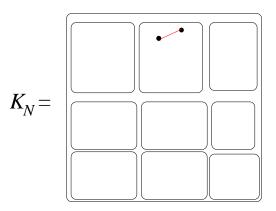
 $\mathcal{F} = \{N_i(v) : v \in V, i \in [m]\}, \text{ dual VC-dimension } d.$

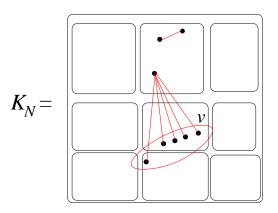
Lemma

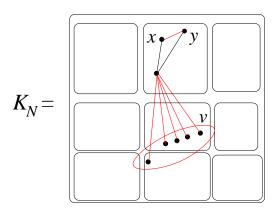


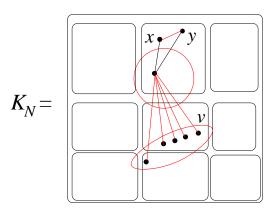
Key observation:

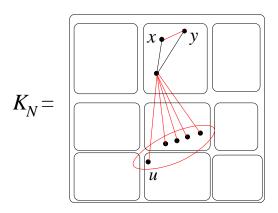


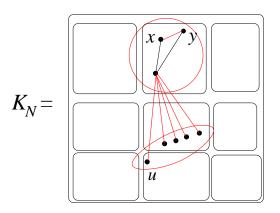


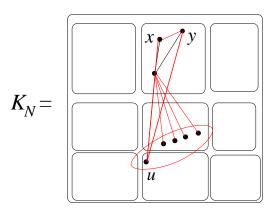


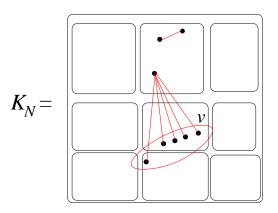




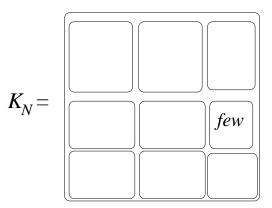




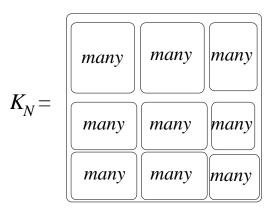


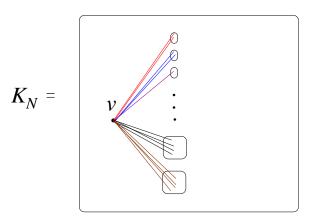


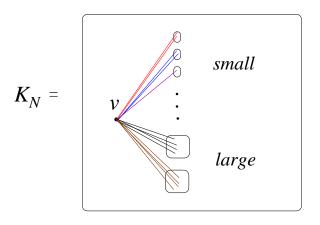
Case 1. If a part is missing many colors, we are done by induction.

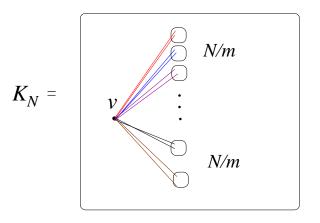


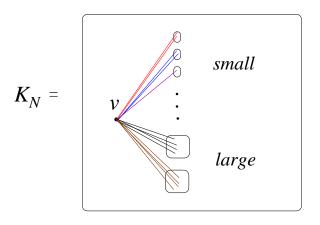
Case 2. Each part has many distinct colors

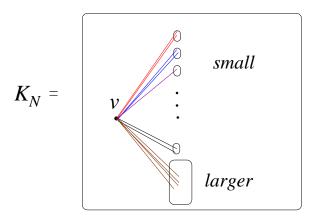




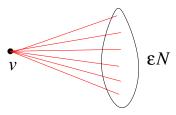








Goal: Find a vertex with large degree with respect to one color class.



Theorem (Fox-Pach-S. 2021)

For d = O(1),

$$r_d(\underbrace{3,\ldots,3}_{m \text{ times}})=2^{\Theta(m)}.$$

Theorem (Fredricksen-Sweet and Abbot-Moser, Schur)

$$(3.199)^m < r(\underbrace{3,\ldots,3}_{m \text{ times}}) < 2^{O(m \log m)}.$$

Question. For what other classes of graphs can we improve the $2^{O(m \log m)}$ upper bound?

Improvement: Intersection size of sets

 $\mathcal{F} \subset 2^X$, *m*-uniform.

- **1** Vertices: $V = \mathcal{F}$.
- **2 Edge coloring:** For $A, B \in \mathcal{F}$, color (A, B) with color $i \in \{0, 1, \dots, m-1\}$ if $|A \cap B| = i$.

Improvement: Intersection size of sets

$$\mathcal{F}\subset 2^X$$
, *m*-uniform.

- **1** Vertices: $V = \mathcal{F}$.
- **2 Edge coloring:** For $A, B \in \mathcal{F}$, color (A, B) with color $i \in \{0, 1, \dots, m-1\}$ if $|A \cap B| = i$.

Question: How large does $|\mathcal{F}|$ have to be in order to guarantee a monochromatic K_3 ?

Improvement: Intersection size of sets

$$\mathcal{F} \subset {X \choose m}$$
, *m*-uniform.

- Vertices: $V = \mathcal{F}$.
- **2 Edge coloring:** For $A, B \in \mathcal{F}$, color (A, B) with color $i \in \{0, 1, \dots, m-1\}$ if $|A \cap B| = i$.

Question: How large does $|\mathcal{F}|$ have to be in order to guarantee a monochromatic K_3 ?

- \bigcirc Schur: $2^{cm \log m}$.
- Alweiss-Lovett-Wu-Zhang: 2^{cm log log m}.

Sunflowers

$$V = ground set$$

$$\mathcal{F}\subset \binom{V}{m}$$
, *m*-uniform.

$$A_1,\ldots,A_p\in\mathcal{F}$$
 for a *p*-sunflower if $A_i\cap A_j=A_k\cap A_\ell$

Sunflowers

V = ground set

 $\mathcal{F}\subset \binom{V}{m}$, *m*-uniform.

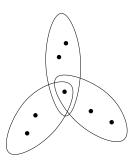
 $A_1, A_2, A_3 \in \mathcal{F}$ for a 3-sunflower if $A_i \cap A_j = A_k \cap A_\ell$

Sunflowers

 $V = \mathsf{ground} \mathsf{set}$

 $\mathcal{F}\subset \binom{V}{m}$, *m*-uniform.

 $A_1,A_2,A_3\in\mathcal{F}$ for a 3-sunflower if $A_i\cap A_j=A_k\cap A_\ell$

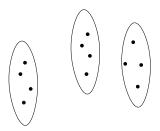


Sunflowers

V = ground set

 $\mathcal{F} \subset \binom{V}{m}$, *m*-uniform.

 $A_1,A_2,A_3\in\mathcal{F}$ for a 3-sunflower if $A_i\cap A_j=A_k\cap A_\ell$



Theorem (Erdős-Rado)

Let $\mathcal{F} \subset \binom{V}{m}$ that does not contain a 3-sunflower. Then

$$|\mathcal{F}| \le m! 2^m = 2^{O(m \log m)}.$$

Theorem (Erdős-Rado)

Let $\mathcal{F}\subset \binom{V}{m}$ that does not contain a 3-sunflower. Then

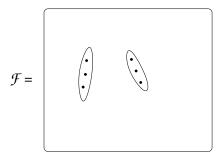
$$|\mathcal{F}| \le m! 2^m = 2^{O(m \log m)}.$$

$$\mathcal{F}$$
 =

Theorem (Erdős-Rado)

Let $\mathcal{F}\subset \binom{V}{m}$ that does not contain a 3-sunflower. Then

$$|\mathcal{F}| \le m! 2^m = 2^{O(m \log m)}.$$

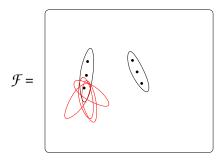


Theorem (Erdős-Rado)

Let $\mathcal{F}\subset \binom{V}{m}$ that does not contain a 3-sunflower. Then

$$|\mathcal{F}| \le m! 2^m = 2^{O(m \log m)}.$$

 $d(v) \geq |\mathcal{F}|/(2m)$.

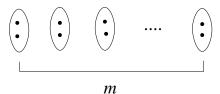


Theorem (Erdős-Rado)

Let $\mathcal{F} \subset \binom{V}{m}$ that does not contain a 3-sunflower. Then

$$|\mathcal{F}| \le m! 2^m = 2^{O(m \log m)}.$$

Lower bound: 2^m

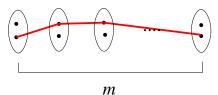


Theorem (Erdős-Rado)

Let $\mathcal{F}\subset \binom{V}{m}$ that does not contain a 3-sunflower. Then

$$|\mathcal{F}| \le m! 2^m = 2^{O(m \log m)}.$$

Lower bound: 2^m



Theorem (Erdős-Rado)

Let $\mathcal{F} \subset \binom{V}{m}$ that does not contain a 3-sunflower. Then

$$|\mathcal{F}| \le m! 2^m = 2^{O(m \log m)}.$$

Conjecture (Erdős-Rado)

Let $\mathcal{F} \subset \binom{V}{m}$ that does not contain a 3-sunflower. Then

$$|\mathcal{F}| \leq 2^{O(m)}$$
.

Theorem (Alweiss-Lovett-Wu-Zhang)

Let $\mathcal{F} \subset \binom{V}{m}$ that does not contain a 3-sunflower. Then

$$|\mathcal{F}| \leq 2^{O(m \log \log m)}$$
.

Conjecture (Erdős-Rado)

Let $\mathcal{F} \subset \binom{V}{m}$ that does not contain a 3-sunflower. Then

$$|\mathcal{F}| \leq 2^{O(m)}$$
.

Theorem (Alweiss-Lovett-Wu-Zhang)

Let $\mathcal{F} \subset \binom{V}{m}$ that does not contain a 3-sunflower. Then

$$|\mathcal{F}| \leq 2^{O(m \log \log m)}$$
.

Conjecture (Erdős-Rado)

Let $\mathcal{F} \subset \binom{V}{m}$ that does not contain a 3-sunflower. Then

$$|\mathcal{F}| \leq 2^{O(m)}$$
.

Question: What if \mathcal{F} is defined geometrically?

Theorem (Alweiss-Lovett-Wu-Zhang)

Let $\mathcal{F} \subset \binom{V}{m}$ that does not contain a 3-sunflower. Then

$$|\mathcal{F}| \leq 2^{O(m \log \log m)}$$
.

Conjecture (Erdős-Rado)

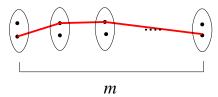
Let $\mathcal{F} \subset \binom{V}{m}$ that does not contain a 3-sunflower. Then

$$|\mathcal{F}| \leq 2^{O(m)}$$
.

Question: What if \mathcal{F} has bounded VC-dimension?

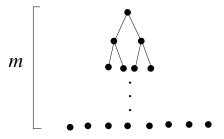
Question: What if \mathcal{F} has bounded VC-dimension?

$$\mathcal{F}=2^m$$

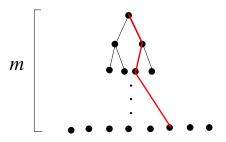


Question: What if $\mathcal F$ has bounded VC-dimension?

 $\mathcal{F}=2^{m-1}$, VC-dimension 1, no 3-sunflower.

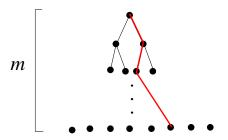


Question: What if \mathcal{F} has bounded VC-dimension? $\mathcal{F} = 2^{m-1}$, VC-dimension 1, no 3-sunflower.



Question: What if \mathcal{F} has bounded VC-dimension?

 $\mathcal{F}=2^{m-1}$, VC-dimension 1, no 3-sunflower.



Can be realized geometrically: V = points in the plane, $\mathcal{F} = \text{disks with } m \text{ points inside}$.

Second main result

Theorem (Fox-Pach-S. 2021)

Let $\mathcal{F}\subset \binom{V}{m}$, such that \mathcal{F} has VC-dimension d=O(1) and no 3-sunflower. Then

$$|\mathcal{F}| \leq 2^{O(m(2d)^{2\log^* m})}.$$

Theorem (Fox-Pach-S. 2021)

Let $\mathcal{F}\subset \binom{V}{m}$, such that \mathcal{F} has VC-dimension d=O(1) and no 3-sunflower. Then

$$|\mathcal{F}| \leq 2^{O(m(2d)^{2\log^* m})}.$$

Skecth of Proof. Induction on m.

Let $\mathcal{F} \subset \binom{V}{m}$ with VC-dimension at most d and no 3-sunflower.

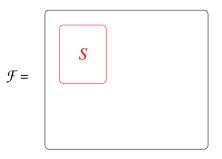
$$f_d(m) = 2^{cm(2d)^{2\log^* m}}$$

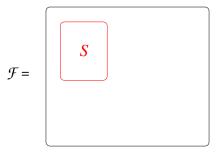
$$|\mathcal{F}| \leq f_d(m)$$
.

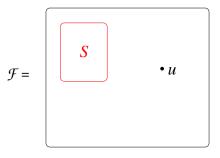
 $\mathcal{F} \subset \binom{V}{m}$, VC-dimension d, no 3-sunflower, $|\mathcal{F}| > f_d(m)$.

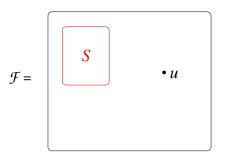
$$\mathcal{F} =$$

 $\mathcal{F} \subset \binom{V}{m}$, VC-dimension d, no 3-sunflower, $|\mathcal{F}| > f_d(m)$.



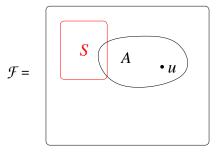






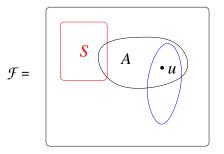
$$sd(u) \leq \sum_{v \in S} d(v) \leq m|\mathcal{F}|$$
 $d(u) \leq (m/s)|\mathcal{F}|$

$$d(u) \leq (m/s)|\mathcal{F}|$$



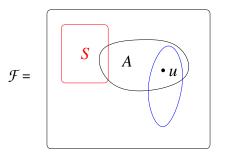
A intersects at most $(m^2/s)|\mathcal{F}|$ outside of S.

$$d(u) \leq (m/s)|\mathcal{F}|$$



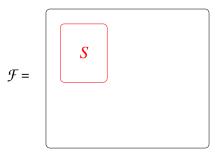
A intersects at most $(m^2/s)|\mathcal{F}|$ outside of S.

$$d(u) \leq (m/s)|\mathcal{F}|$$

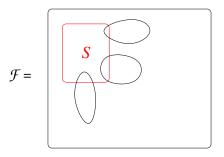


At least $(1 - \frac{6m^2}{s})(\frac{|\mathcal{F}|}{3})$ triples are pairwise disjoint outside of S.

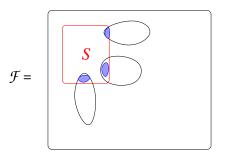
Case 1: For at least $|\mathcal{F}|/2$ sets $A \in \mathcal{F}$, $|A \cap S| \leq \log m$.



Case 1: For at least $|\mathcal{F}|/2$ sets $A \in \mathcal{F}$, $|A \cap S| \leq \log m$.

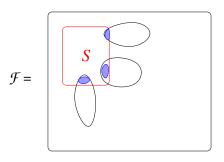


Case 1: For at least $|\mathcal{F}|/2$ sets $A \in \mathcal{F}$, $|A \cap S| \leq \log m$.



$$\mathcal{F}' = \{ A \cap S : |A \cap S| \le \log m \}$$

Case 1: For at least $|\mathcal{F}|/2$ sets $A \in \mathcal{F}$, $|A \cap S| \leq \log m$.



$$\mathcal{F}' = \{A \cap S : |A \cap S| \le \log m\}$$

- $oldsymbol{0}$ \mathcal{F}' is a multiset system
- $|\mathcal{F}'| \ge |\mathcal{F}|/2$

By induction: $|\mathcal{F}'| > 2^{cm(2d)^{2\log^* m}}$, sets of size at most $\log m$.

Lemma

There are at least

$$\frac{1}{(f_d(\log m))^2} \binom{|\mathcal{F}'|}{3}$$

triples that form a 3-sunflower in S.

By induction: $|\mathcal{F}'| > 2^{cm(2d)^{2\log^* m}}$, sets of size at most $\log m$.

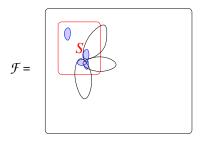
Lemma

There are at least

$$\frac{1}{8(f_d(\log m))^2} \binom{|\mathcal{F}|}{3}$$

triples that form a 3-sunflower in S.

By induction: $|\mathcal{F}'| > 2^{cm(2d)^{2\log^* m}}$, sets of size at most $\log m$.



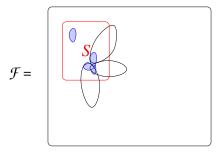
Lemma

There are at least

$$\frac{1}{8(f_d(\log m))^2}\binom{|\mathcal{F}|}{3}$$

triples that form a 3-sunflower in S.

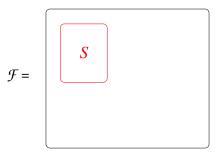
$$s = 100m^2(f_d(\log m))^2.$$



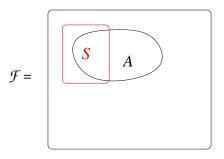
At least $\frac{1}{8(f_d(\log m))^2} {|\mathcal{F}| \choose 3}$ 3-sunflowers in S.

At least $(1 - \frac{6m^2}{s})^{\binom{|\mathcal{F}|}{3}}$ triples are pairwise disjoint outside of S.

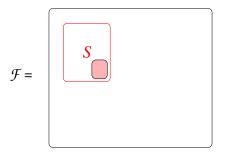
Case 2: For at least $|\mathcal{F}|/2$ sets $A \in \mathcal{F}$, $|A \cap S| > \log m$.



Case 2: For at least $|\mathcal{F}|/2$ sets $A \in \mathcal{F}$, $|A \cap S| > \log m$.

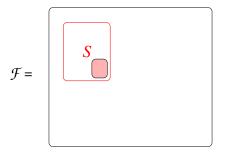


Case 2: For at least $|\mathcal{F}|/2$ sets $A \in \mathcal{F}$, $|A \cap S| > \log m$.



Sauer-Shelah: At most s^d distinct intersections with S.

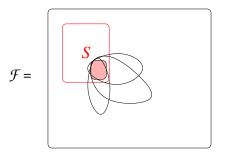
Case 2: For at least $|\mathcal{F}|/2$ sets $A \in \mathcal{F}$, $|A \cap S| > \log m$.

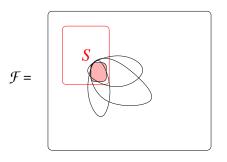


Sauer-Shelah: At most s^d distinct intersections with S.

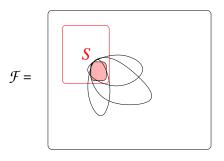
$$\exists S' \subset S, |S'| > \log m.$$

Case 2: For at least $|\mathcal{F}|/2$ sets $A \in \mathcal{F}$, $|A \cap S| > \log m$.

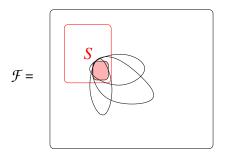




$$\frac{|\mathcal{F}|}{2s^d} \le f_d(m - \log m) \le 2^{c(m - \log m)(2d)^{2\log^* m}}$$



$$|\mathcal{F}| \leq 2^{cm(2d)^{2\log^* m}} = f_d(m).$$



$$f_d(m) < |\mathcal{F}| \le 2^{cm(2d)^{2 \log^* m}} = f_d(m).$$

Open problems

Theorem (Fox-Pach-S. 2021)

Let $\mathcal{F}\subset \binom{V}{m}$, such that \mathcal{F} has VC-dimension d=O(1) and no 3-sunflower. Then

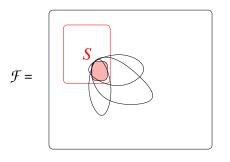
$$|\mathcal{F}| \leq 2^{O(m(2d)^{2\log^* m})}.$$

Questions

- Semi-algebraic setting? I.e., points in spheres in \mathbb{R}^d .
- (Weak delta-system) What about 3 sets that pairwise intersect with the same size?
- Multicolor Ramsey numbers: What if each color class has bounded VC-dimension?

Thank you!

$$s = 100m^2(f_d(\log m))^2 = (100m^2)2^{2c \log m(2d)^{2(\log^* m - 1)}}$$



$$|\mathcal{F}| \le 2s^d 2^{cm(2d)^{2\log^* m} - c\log m(2d)^{2\log^* m}}$$

 $\le 2^{cm(2d)^{2\log^* m}}.$