Disjoint faces in drawings of the complete graph

Andrew Suk (UC San Diego)

June 12, 2023

Problem (Heilbronn)

What is the smallest $h(n)$ such that any set of n points in the unit square spans a triangle whose area is at most $h(n)$?

Problem (Heilbronn)

What is the smallest $h(n)$ such that any set of n points in the unit square spans a triangle whose area is at most $h(n)$?

Problem (Heilbronn)

What is the smallest $h(n)$ such that any set of n points in the unit square spans a triangle whose area is at most $h(n)$?

Problem (Heilbronn)

What is the smallest $h(n)$ such that any set of n points in the unit square spans a triangle whose area is at most $h(n)$?

Problem (Heilbronn)

What is the smallest $h(n)$ such that any set of n points in the unit square spans a triangle whose area is at most $h(n)$?

Problem (Heilbronn)

What is the smallest $h(n)$ such that any set of n points in the unit square spans a triangle whose area is at most $h(n)$?

$h(n)=O\left(\frac{1}{n}\right)$

Problem (Heilbronn)

What is the smallest $h(n)$ such that any set of n points in the unit square spans a triangle whose area is at most $h(n)$?

$h(n)=O\left(\frac{1}{n}\right)$
Komlós-Pintz-Szemerédi 1981: $h(n)=O\left(\frac{1}{n^{\frac{8}{7}-\epsilon}}\right)$

Problem (Heilbronn)

What is the smallest $h(n)$ such that any set of n points in the unit square spans a triangle whose area is at most $h(n)$?

$h(n)=O\left(\frac{1}{n}\right)$
Komlós-Pintz-Szemerédi 1981: $h(n)=O\left(\frac{1}{n^{\frac{8}{7}-\epsilon}}\right)$
Komlós-Pintz-Szemerédi 1982: $h(n)=\Omega\left(\frac{\log n}{n^{2}}\right)$

Problem (Heilbronn)

What is the smallest $h(n)$ such that any set of n points in the unit square spans a triangle whose area is at most $h(n)$?

$h(n)=O\left(\frac{1}{n}\right)$
Komlós-Pintz-Szemerédi 1981: $h(n)=O\left(\frac{1}{n^{\frac{8}{7}-\epsilon}}\right)$
Komlós-Pintz-Szemerédi 1982: $h(n)=\Omega\left(\frac{\log n}{n^{2}}\right)$

Problem (Heilbronn)

What is the smallest $h(n)$ such that any set of n points in the unit square spans a triangle whose area is at most $h(n)$?

$h(n)=O\left(\frac{1}{n}\right)$
Cohen-Pohoata-Zakharov 2023+: $h(n)=O\left(\frac{1}{n^{\frac{8}{7}}+\frac{1}{2000}}\right)$
Komlós-Pintz-Szemerédi 1982: $h(n)=\Omega\left(\frac{\log n}{n^{2}}\right)$

Problem (Heilbronn)

What is the smallest $h(n)$ such that any set of n points in the unit square spans a triangle whose area is at most $h(n)$?

Question: What about Heilbronn's problem for topological graphs?

Problem (Heilbronn)

What is the smallest $h(n)$ such that any set of n points in the unit square spans a triangle whose area is at most $h(n)$?

Question: What about Heilbronn's problem for topological graphs?
$V=$ points in the plane.
$E=$ curves connecting the corresponding points (vertices).

Triangles and faces
k-face: Open bounded region of a non-self-intersecting k-cycle in K_{n}.

Triangles and faces
k-face: Open bounded region of a non-self-intersecting k-cycle in K_{n}.

Not k-faces:

Problem (Heilbronn)

What is the smallest $h(n)$ such that any set of n points in the unit square spans a triangle whose area is at most $h(n)$?

Topological variant of Heilbronn's problem.

Problem (Heilbronn)

What is the smallest $\tilde{h}(n)$ such that any complete topological graph on n vertices in the unit square spans a triangle (3-face) whose area is at most $\tilde{h}(n)$?

Topological variant of Heilbronn's problem

Problem (Heilbronn)

What is the smallest $\tilde{h}(n)$ such that any complete topological graph on n vertices in the unit square spans a triangle (3-face) whose area is at most $\tilde{h}(n)$?

Topological variant of Heilbronn's problem

Problem (Heilbronn)

What is the smallest $\tilde{h}(n)$ such that any complete topological graph on n vertices in the unit square spans a triangle (3-face) whose area is at most $\tilde{h}(n)$?

Topological variant of Heilbronn's problem

Problem (Heilbronn)

What is the smallest $\tilde{h}(n)$ such that any complete topological graph on n vertices in the unit square spans a triangle (3-face) whose area is at most $\tilde{h}(n)$?

Topological variant of Heilbronn's problem

Problem (Heilbronn)

What is the smallest $\tilde{h}(n)$ such that any complete topological graph on n vertices in the unit square spans a triangle (3-face) whose area is at most $\tilde{h}(n)$?

No k-faces: Every k-cycle self-intersects.

Topological variant of Heilbronn's problem

Problem (Heilbronn)

What is the smallest $\tilde{h}(n)$ such that any complete topological graph on n vertices in the unit square spans a triangle (3-face) whose area is at most $\tilde{h}(n)$?

No k-faces: Every k-cycle self-intersects.

Simple Topological Graph $G=(V, E)$

$V=$ points in the plane.
$E=$ curves connecting the corresponding points (vertices).
Every pair of edges have at most 1 point in common.

We will only consider simple topological graphs.

Topological variant of Heilbronn's problem

Problem (Heilbronn)

What is the smallest $\tilde{h}(n)$ such that any simple complete topological graph on n vertices in the unit square spans a triangle (3-face) whose area is at most $\tilde{h}(n)$?

Topological variant of Heilbronn's problem

Problem (Heilbronn)

What is the smallest $\tilde{h}(n)$ such that any simple complete topological graph on n vertices in the unit square spans a triangle (3-face) whose area is at most $\tilde{h}(n)$?

Topological variant of Heilbronn's problem

Problem (Heilbronn)

What is the smallest $\tilde{h}(n)$ such that any simple complete topological graph on n vertices in the unit square spans a triangle (3-face) whose area is at most $\tilde{h}(n)$?

Topological variant of Heilbronn's problem

Problem (Heilbronn)

What is the smallest $\tilde{h}(n)$ such that any simple complete topological graph on n vertices in the unit square spans a triangle (3-face) whose area is at most $\tilde{h}(n)$?

Answer: $\tilde{h}(n) \geq 1-o(1)$.

Complete twisted graph

Introduced by Harborth-Mengersen 1992.

Complete twisted graph

Introduced by Harborth-Mengersen 1992.

Every odd face (odd cycle) contains the origin. $\tilde{h}(n) \geq 1-o(1)$.

Complete twisted graph

Introduced by Harborth-Mengersen 1992.

Every odd face (odd cycle) contains the origin. $\tilde{h}(n) \geq 1-o(1)$.
Question: What about the even faces? 4-faces?

Topological variant of Heilbronn's problem

Problem (Heilbronn)

What is the smallest $\tilde{h}_{4}(n)$ such that any simple complete topological graph on n vertices in the unit square spans a 4-face whose area is at most $\tilde{h}_{4}(n)$?

Topological variant of Heilbronn's problem

Problem (Heilbronn)

What is the smallest $\tilde{h}_{4}(n)$ such that any simple complete topological graph on n vertices in the unit square spans a 4-face whose area is at most $\tilde{h}_{4}(n)$?

Theorem (Hubard-S. 2023)

$$
\tilde{h}_{4}(n) \leq O\left(\frac{1}{n^{1 / 3}}\right) .
$$

Topological variant of Heilbronn's problem

Problem (Heilbronn)

What is the smallest $\tilde{h}_{4}(n)$ such that any simple complete topological graph on n vertices in the unit square spans a 4-face whose area is at most $\tilde{h}_{4}(n)$?

Theorem (Hubard-S. 2023)

$$
\tilde{h}_{4}(n) \leq O\left(\frac{1}{n^{1 / 3}}\right) .
$$

Leffman 2008: $\tilde{h}_{4}(n) \geq \Omega\left(\frac{\log ^{1 / 2} n}{n^{3 / 2}}\right)$.

Disjoint 4-faces

Hubard-S. 2023: $\tilde{h}_{4}(n) \leq O\left(\frac{1}{n^{1 / 3}}\right)$.

Disjoint 4-faces

Hubard-S. 2023: $\tilde{h}_{4}(n) \leq O\left(\frac{1}{n^{1 / 3}}\right)$.

Theorem (Hubard-S. 2023)

Every complete n-vertex simple topological graph contains $\Omega\left(n^{1 / 3}\right)$ pairwise disjoint 4-faces.

Disjoint 4-faces

Hubard-S. 2023: $\tilde{h}_{4}(n) \leq O\left(\frac{1}{n^{1 / 3}}\right)$.

Theorem (Hubard-S. 2023)

Every complete n-vertex simple topological graph contains $\Omega\left(n^{1 / 3}\right)$ pairwise disjoint 4-faces.

Disjoint 4-faces: Ideas of the proof

Lemma (Ruiz-Vargas 2015)

There are two edges emanating out of v to the boundary, such that the edges lie completely inside the face.

Disjoint 4-faces: Ideas of the proof

Lemma (Ruiz-Vargas 2015)

There are two edges emanating out of v to the boundary, such that the edges lie completely inside the face.

Disjoint 4-faces: Ideas of the proof

Lemma (Ruiz-Vargas 2015)

There are two edges emanating out of v to the boundary, such that the edges lie completely inside the face.

Disjoint 4-faces: Ideas of the proof

Lemma (Hubard-S. 2023)

$|F|=k$, with at least $6 k-4$ vertices inside, there is a 4-face inside of F.

Disjoint 4-faces: Ideas of the proof

Lemma (Hubard-S. 2023)
$|F|=k$, with at least $6 k-4$ vertices inside, there is a 4-face inside of F.

Sketch proof

Proof.

Sketch proof

Proof.

Sketch proof

Proof.

Sketch proof

Proof. Apply the Lemma due to Ruiz-Vargas.

Sketch proof

Proof. Apply the Lemma due to Ruiz-Vargas.

Sketch proof

Proof. Apply the Lemma due to Ruiz-Vargas.

Sketch proof

Proof. Apply the Lemma due to Ruiz-Vargas.

Sketch proof

Proof. Apply the Lemma due to Ruiz-Vargas.

Sketch proof

Proof. Apply the Lemma due to Ruiz-Vargas.

Sketch proof

Proof. Apply the Lemma due to Ruiz-Vargas.

Planar graph with $\Theta(n)$ edges.

Sketch proof

Case 1. There is a vertex of degree $n^{1 / 3}$.

Sketch proof

Case 1. There is a vertex of degree $n^{1 / 3}$.

Planar $K_{2, c n^{1 / 3}}$ gives $\Theta\left(n^{1 / 3}\right)$ pariwise disjoint 4-faces.

Sketch proof

Case 2. No vertex has degree $n^{1 / 3}$, matching of size $\Theta\left(n^{2 / 3}\right)$.

Sketch proof

Case 2. No vertex has degree $n^{1 / 3}$, matching of size $\Theta\left(n^{2 / 3}\right)$.

$\Theta\left(n^{1 / 3}\right)$ pariwise disjoint 4-faces.

Sketch proof

Case 2. No vertex has degree $n^{1 / 3}$, matching of size $\Theta\left(n^{2 / 3}\right)$.

$\Theta\left(n^{1 / 3}\right)$ nested sequence.

Sketch proof

Case 2. No vertex has degree $n^{1 / 3}$, matching of size $\Theta\left(n^{2 / 3}\right)$.

$\Theta\left(n^{1 / 3}\right)$ nested sequence.

Sketch proof

Case 2. No vertex has degree $n^{1 / 3}$, matching of size $\Theta\left(n^{2 / 3}\right)$.

$\Theta\left(n^{1 / 3}\right)$ nested sequence.

Open problems

$$
\Omega\left(\frac{\log ^{1 / 2} n}{n^{3 / 2}}\right) \leq \tilde{h}_{4}(n) \leq O\left(\frac{1}{n^{1 / 3}}\right)
$$

Open problems

$$
\Omega\left(\frac{\log ^{1 / 2} n}{n^{3 / 2}}\right) \leq \tilde{h}_{4}(n) \leq O\left(\frac{1}{n^{1 / 3}}\right)
$$

Problem

Can we improve the lower bound for complete simple topological graphs?

Open problems

$$
\Omega\left(\frac{\log ^{1 / 2} n}{n^{3 / 2}}\right) \leq \tilde{h}_{4}(n) \leq O\left(\frac{1}{n^{1 / 3}}\right)
$$

Problem

Can we improve the lower bound for complete simple topological graphs?

Problem

Does every complete simple topological graph on n vertices contain $\Omega(n)$ pairwise disjoint 4-faces?

Thank you!

