New developments in hypergraph Ramsey theory

Andrew Suk (UC San Diego)

June 5, 2018

Origins of Ramsey theory

"A combinatorial problem in geometry," by Paul Erdős and George Szekeres (1935)

Erdős-Szekeres 1935

Theorem (Monotone subsequence)

Any sequence of $(n-1)^{2}+1$ integers contains a monotone subsequence of length n.

Theorem (Convex polygon)

For any $n>0$, there is a minimal $E S(n)$, such that every set of $E S(n)$ points in the plane in general position contains n members in convex position.

Theorem (Ramsey numbers)

New proof of Ramsey's theorem.

Convex polygon theorem

Theorem (Erdős-Szekeres 1935, 1960)

$$
2^{n-2}+1 \leq E S(n) \leq\binom{ 2 n-4}{n-2}+1=O\left(4^{n} / \sqrt{n}\right)
$$

Conjecture: $E S(n)=2^{n-2}+1, n \geq 3$.

Convex polygon theorem

Theorem (Erdős-Szekeres 1935, 1960)

$$
2^{n-2}+1 \leq E S(n) \leq\binom{ 2 n-4}{n-2}+1=O\left(4^{n} / \sqrt{n}\right)
$$

Theorem (S. 2016)

$$
E S(n)=2^{n+o(n)}
$$

Erdős-Szekeres 1935

Theorem (Monotone subsequence)

Any sequence of $(n-1)^{2}+1$ integers contains a monotone subsequence of length n.

Theorem (Convex polygon)

For any $n>0$, there is a minimal $E S(n)$, such that every set of $E S(n)$ points in the plane in general position contains n members in convex position.

Theorem (Ramsey numbers)

New proof of Ramsey's theorem.

Ramsey theory

Formal definition: For any integers $k \geq 1, s, n \geq k$, there is a minimum $r_{k}(s, n)=N$, such that for every red/blue coloring of the k-tuples of $\{1,2, \ldots, N\}$,

(1) s integers for which every k-tuple is red, or
(2) n integers for which every k-tuple is blue.

Ramsey theory

Formal definition: For any integers $k \geq 1, s, n \geq k$, there is a minimum $r_{k}(s, n)=N$, such that for every red/blue coloring of the k-tuples of $\{1,2, \ldots, N\}$,

(1) s integers for which every k-tuple is red, or
(2) n integers for which every k-tuple is blue.

Ramsey theory

Formal definition: For any integers $k \geq 1, s, n \geq k$, there is a minimum $r_{k}(s, n)=N$, such that for every red/blue coloring of the k-tuples of $\{1,2, \ldots, N\}$,

(1) s integers for which every k-tuple is red, or
(2) n integers for which every k-tuple is blue.

Ramsey theory

Formal definition: For any integers $k \geq 1, s, n \geq k$, there is a minimum $r_{k}(s, n)=N$, such that for every red/blue coloring of the k-tuples of $\{1,2, \ldots, N\}$,

(1) s integers for which every k-tuple is red, or
(2) n integers for which every k-tuple is blue.

Ramsey theory

Formal definition: For any integers $k \geq 1, s, n \geq k$, there is a minimum $r_{k}(s, n)=N$, such that for every red/blue coloring of the k-tuples of $\{1,2, \ldots, N\}$,

(1) s integers for which every k-tuple is red, or
(2) n integers for which every k-tuple is blue.

Ramsey theory

Formal definition: For any integers $k \geq 1, s, n \geq k$, there is a minimum $r_{k}(s, n)=N$, such that for every red/blue coloring of the k-tuples of $\{1,2, \ldots, N\}$,

(1) s integers for which every k-tuple is red, or
(2) n integers for which every k-tuple is blue.

Ramsey theory

Formal definition: For any integers $k \geq 1, s, n \geq k$, there is a minimum $r_{k}(s, n)=N$, such that for every red/blue coloring of the k-tuples of $\{1,2, \ldots, N\}$,

(1) s integers for which every k-tuple is red, or
(2) n integers for which every k-tuple is blue.
$r_{k}(s, n)=$ Ramsey numbers

Graph Ramsey theorem

Theorem (Erdős-Szekeres 1935)

$$
\begin{gathered}
r_{2}(s, n) \leq\binom{ n+s-2}{s-1} \\
r_{2}(n, n) \leq\binom{ 2 n-2}{n-1} \approx \frac{4^{n}}{\sqrt{n}}
\end{gathered}
$$

Graph Ramsey number $r_{2}(n, n) \leq 4^{n}$

Let G be the complete graph with 4^{n} vertices, every edge has color red or blue.

Graph Ramsey number $r_{2}(n, n) \leq 4^{n}$

Let G be the complete graph with 4^{n} vertices, every edge has color red or blue.

Graph Ramsey number $r_{2}(n, n) \leq 4^{n}$

Let G be the complete graph with 4^{n} vertices, every edge has color red or blue.

Graph Ramsey number $r_{2}(n, n) \leq 4^{n}$

Let G be the complete graph with 4^{n} vertices, every edge has color red or blue.

Graph Ramsey number $r_{2}(n, n) \leq 4^{n}$

Let G be the complete graph with 4^{n} vertices, every edge has color red or blue.

Graph Ramsey number $r_{2}(n, n) \leq 4^{n}$

Let G be the complete graph with 4^{n} vertices, every edge has color red or blue.

Graph Ramsey number $r_{2}(n, n) \leq 4^{n}$

Let G be the complete graph with 4^{n} vertices, every edge has color red or blue.

Graph Ramsey number $r_{2}(n, n) \leq 4^{n}$

Let G be the complete graph with 4^{n} vertices, every edge has color red or blue.

Graph Ramsey number $r_{2}(n, n) \leq 4^{n}$

Let G be the complete graph with 4^{n} vertices, every edge has color red or blue.

Graph Ramsey number $r_{2}(n, n) \leq 4^{n}$

Let G be the complete graph with 4^{n} vertices, every edge has color red or blue.

Graph Ramsey number $r_{2}(n, n) \leq 4^{n}$

Let G be the complete graph with 4^{n} vertices, every edge has color red or blue.

Graph Ramsey number $r_{2}(n, n) \leq 4^{n}$

Let G be the complete graph with 4^{n} vertices, every edge has color red or blue.

Graph Ramsey number $r_{2}(n, n) \leq 4^{n}$

Let G be the complete graph with 4^{n} vertices, every edge has color red or blue.

Graph Ramsey number $r_{2}(n, n) \leq 4^{n}$

Let G be the complete graph with 4^{n} vertices, every edge has color red or blue.

Graph Ramsey number $r_{2}(n, n) \leq 4^{n}$

Let G be the complete graph with 4^{n} vertices, every edge has color red or blue.

n

Graph Ramsey number $r_{2}(n, n) \leq 4^{n}$

Let G be the complete graph with 4^{n} vertices, every edge has color red or blue.

n

Diagonal graph Ramsey numbers

Theorem (Erdős 1947, Erdős-Szekeres 1935)

$$
(1+o(1)) \frac{n}{e} 2^{n / 2}<r_{2}(n, n)<\frac{4^{n}}{\sqrt{n}} .
$$

Theorem (Spencer 1977, Conlon 2008)

$$
(1+o(1)) \frac{\sqrt{2}}{e} n 2^{n / 2}<r_{2}(n, n)<\frac{4^{n}}{n^{c \log n / \log \log n}}
$$

Upper bounds for $r_{k}(n, n)$

Generalize the greedy argument by considering edges emanating out of $(k-1)$-tuples.

Erdős-Rado upper bound argument

Greedy argument to reduce the problem to a $(k-1)$-uniform hypergraph problem. Argument shows

$$
r_{k}(s, n) \leq 2^{\left(r_{k-1}(s-1, n-1)\right)^{k-1}}
$$

Upper bounds for diagonal hypergraph Ramsey numbers

Applying $r_{k}(s, n) \leq 2^{\left(r_{k-1}(s-1, n-1)\right)^{k-1}}$.
Conlon (2008): $r_{2}(n, n)<\frac{4^{n}}{n^{c \log n \log \log n}}$

Upper bounds for diagonal hypergraph Ramsey numbers

Applying $r_{k}(s, n) \leq 2^{\left(r_{k-1}(s-1, n-1)\right)^{k-1}}$.
Conlon (2008): $r_{2}(n, n)<\frac{4^{n}}{n^{c \log n / \log \log n}}$
Erdős-Rado (1952): $r_{3}(n, n)<2^{2^{c n}}$

Upper bounds for diagonal hypergraph Ramsey numbers

Applying $r_{k}(s, n) \leq 2^{\left(r_{k-1}(s-1, n-1)\right)^{k-1}}$.
Conlon (2008): $r_{2}(n, n)<\frac{4^{n}}{n^{c \log n \log \log n}}$
Erdős-Rado (1952): $r_{3}(n, n)<2^{2^{c n}}$
Erdős-Rado (1952): $r_{4}(n, n)<2^{2^{2^{c n}}}$

Upper bounds for diagonal hypergraph Ramsey numbers

Applying $r_{k}(s, n) \leq 2^{\left(r_{k-1}(s-1, n-1)\right)^{k-1}}$.
Conlon (2008): $r_{2}(n, n)<\frac{4^{n}}{n^{c \log n} \log \log n}$
Erdős-Rado (1952): $r_{3}(n, n)<2^{2^{c n}}$
Erdős-Rado (1952): $r_{4}(n, n)<2^{2^{2^{c n}}}$

Erdős-Rado (1952): $r_{k}(n, n)<\operatorname{twr}_{k}(c n)$
$\operatorname{twr}_{1}(x)=x$ and $\operatorname{twr}_{i+1}(x)=2^{\operatorname{twr}_{i}(x)}$.

Lower bounds for diagonal hypergraph Ramsey numbers

Random constructions
Spencer (1977): $\frac{\sqrt{2}}{e} n 2^{n / 2}<r_{2}(n, n)<\frac{4^{n}}{n^{c \log n \log \log n}}$
Erdős (1947): $2^{c^{\prime} n^{2}}<r_{3}(n, n)<2^{2^{c n}}$
Erdős-Rado (1952): $r_{4}(n, n)<2^{2^{2^{c n}}}$

Erdős-Rado (1952): $r_{k}(n, n)<\operatorname{twr}_{k}(c n)$
$\operatorname{twr}_{1}(x)=x$ and $\operatorname{twr}_{i+1}(x)=2^{\operatorname{twr}_{i}(x)}$.

Hypergraph Ramsey numbers

Theorem (Erdős-Rado 1952)

$$
2^{c n^{2}}<r_{3}(n, n)<2^{2^{c^{\prime} n}}
$$

Conjecture (Erdős, \$500)

$$
r_{3}(n, n)>2^{2^{c n}}
$$

Lower bounds for diagonal hypergraph Ramsey numbers

Random constructions
Spencer (1977): $\frac{\sqrt{2}}{e} n 2^{n / 2}<r_{2}(n, n)<\frac{4^{n}}{n^{c \log n \log \log n}}$
Erdős (1947): $2^{c^{\prime} n^{2}}<r_{3}(n, n)<2^{2^{c n}}$
Erdős-Rado (1952): $r_{4}(n, n)<2^{2^{2^{c n}}}$

Erdős-Rado (1952): $r_{k}(n, n)<\operatorname{twr}_{k}(c n)$
$\operatorname{twr}_{1}(x)=x$ and $\operatorname{twr}_{i+1}(x)=2^{\operatorname{twr}_{i}(x)}$.

Lower bounds for diagonal hypergraph Ramsey numbers

Erdős-Hajnal stepping up lemma: $k \geq 3, r_{k+1}(n, n)>2^{r_{k}(n / 4, n / 4)}$.
Spencer (1977): $\frac{\sqrt{2}}{e} n 2^{n / 2}<r_{2}(n, n)<\frac{4^{n}}{n^{c \log n \log \log n}}$
Erdős (1947): $2^{c^{\prime} n^{2}}<r_{3}(n, n)<2^{2^{c n}}$
Erdős-Rado (1952): $r_{4}(n, n)<2^{2^{2^{n n}}}$

Erdös-Rado (1952): $r_{k}(n, n)<\operatorname{twr}_{k}(c n)$
$\operatorname{twr}_{1}(x)=x$ and $\operatorname{twr}_{i+1}(x)=2^{\operatorname{twr}_{i}(x)}$.

Lower bounds for diagonal hypergraph Ramsey numbers

Erdős-Hajnal stepping up lemma: $k \geq 3, r_{k+1}(n, n)>2^{r_{k}(n / 4, n / 4)}$.
Spencer (1977): $\frac{\sqrt{2}}{e} n 2^{n / 2}<r_{2}(n, n)<\frac{4^{n}}{n^{c \log n \log \log n}}$
Erdős (1947): $2^{c^{\prime} n^{2}}<r_{3}(n, n)<2^{2^{c n}}$
Erdős-Hajnal: $2^{2^{c^{\prime} n^{2}}}<r_{4}(n, n)<2^{2^{2^{c n}}}$

Erdős-Rado (1952): $r_{k}(n, n)<\operatorname{twr}_{k}(c n)$
$\operatorname{twr}_{1}(x)=x$ and $\operatorname{twr}_{i+1}(x)=2^{\operatorname{twr}_{i}(x)}$.

Lower bounds for diagonal hypergraph Ramsey numbers

Erdős-Hajnal stepping up lemma: $k \geq 3, r_{k+1}(n, n)>2^{r_{k}(n / 4, n / 4)}$.
Spencer (1977): $\frac{\sqrt{2}}{e} n 2^{n / 2}<r_{2}(n, n)<\frac{4^{n}}{n^{c \log n \log \log n}}$
Erdős (1947): $2^{c^{\prime} n^{2}}<r_{3}(n, n)<2^{2^{c n}}$
Erdős-Hajnal: $2^{2^{c^{\prime} n^{2}}}<r_{4}(n, n)<2^{2^{2^{c n}}}$

Erdős-Hajnal: $\operatorname{twr}_{k-1}\left(c^{\prime} n^{2}\right)<r_{k}(n, n)<\operatorname{twr}_{k}(c n)$
$\operatorname{twr}_{1}(x)=x$ and $\operatorname{twr}_{i+1}(x)=2^{\operatorname{twr}_{i}(x)}$.

Conjecture: $r_{3}(n, n)>2^{2 c n}$

Theorem (Erdős-Hajnal-Rado 1952/1965)

$$
2^{c n^{2}}<r_{3}(n, n)<2^{2^{c^{\prime} n}}
$$

Theorem (Erdős-Hajnal)

$$
r_{3}(n, n, n, n)>2^{2^{c n}}
$$

Off-diagonal Ramsey numbers

$r_{k}(s, n)$ where s is fixed, and $n \rightarrow \infty$.
Graphs:
Theorem (Ajtai-Komlós-Szemerédi 1980, Kim 1995)
$r_{2}(3, n)=\Theta\left(\frac{n^{2}}{\log n}\right)$

Theorem

For fixed $s>3$

$$
n^{(s+1) / 2+o(1)}<r_{2}(s, n)<n^{s-1+o(1)}
$$

Upper bounds for off-diagonal Ramsey numbers

3-uniform hypergraphs:
Theorem (Erdős-Hajnal-Rado)
For fixed $s \geq 4$,

$$
2^{c s n}<r_{3}(s, n)<2^{c^{\prime} n^{2 s-4}}
$$

Theorem (Conlon-Fox-Sudakov 2010)
For fixed $s \geq 4$,

$$
2^{c s n \log n}<r_{3}(s, n)<2^{c^{\prime} n^{s-2} \log n} .
$$

Upper bounds for off-diagonal hypergraph Ramsey numbers

Fixed $s \geq k+1$.
Erdős-Szekeres (1935): $r_{2}(s, n)<n^{s-1+o(1)}$
Conlon-Fox-Sudakov (2010): $r_{3}(s, n)<2^{c n^{s-2}} \log n$

Upper bounds for off-diagonal hypergraph Ramsey numbers

Fixed $s \geq k+1$.
Erdős-Szekeres (1935): $r_{2}(s, n)<n^{s-1+o(1)}$
Conlon-Fox-Sudakov (2010): $r_{3}(s, n)<2^{c n^{s-2}} \log n$
Erdős-Rado (1952): $r_{4}(s, n)<2^{2^{n^{c}}}$

Upper bounds for off-diagonal hypergraph Ramsey numbers

Fixed $s \geq k+1$.
Erdős-Szekeres (1935): $r_{2}(s, n)<n^{s-1+o(1)}$
Conlon-Fox-Sudakov (2010): $r_{3}(s, n)<2^{c n^{s-2}} \log n$
Erdős-Rado (1952): $r_{4}(s, n)<2^{2^{n^{c}}}$
Erdős-Rado (1952): $r_{5}(s, n)<2^{2^{2^{n^{c}}}}$

Upper bounds for off-diagonal hypergraph Ramsey numbers

Fixed $s \geq k+1$.
Erdős-Szekeres (1935): $r_{2}(s, n)<n^{s-1+o(1)}$
Conlon-Fox-Sudakov (2010): $r_{3}(s, n)<2^{c n^{s-2} \log n}$
Erdős-Rado (1952): $r_{4}(s, n)<2^{2^{n^{c}}}$
Erdős-Rado (1952): $r_{5}(s, n)<2^{2^{2^{n^{c}}}}$

Erdös-Rado: $r_{k}(s, n)<\operatorname{twr}_{k-1}\left(n^{c}\right)$

Lower bounds for off-diagonal hypergraph Ramsey numbers

Fixed $s \geq k+1$.
Bohman-Keevash (2010): $n^{(s+1) / 2+o(1)}<r_{2}(s, n)<n^{s-1+o(1)}$
Conlon-Fox-Sudakov (2010): $2^{c^{\prime} n \log n}<r_{3}(s, n)<2^{c n^{s-2} \log n}$
Erdős-Rado (1952): $r_{4}(s, n)<2^{2^{n^{c}}}$
Erdős-Rado (1952): $r_{5}(s, n)<2^{2^{2^{c^{c}}}}$

Erdös-Rado: $r_{k}(s, n)<\operatorname{twr}_{k-1}\left(n^{c}\right)$

Lower bounds for off-diagonal hypergraph Ramsey numbers

Fixed $s \geq k+1$.
Bohman-Keevash (2010): $n^{(s+1) / 2+o(1)}<r_{2}(s, n)<n^{s-1+o(1)}$
Conlon-Fox-Sudakov (2010): $2^{c^{\prime} n \log n}<r_{3}(s, n)<2^{c n^{s-2} \log n}$
Erdős-Rado (1952): $r_{4}(s, n)<2^{2^{n^{c}}}$
Erdős-Rado (1952): $r_{5}(s, n)<2^{2^{2^{c^{c}}}}$

Erdős-Rado: $r_{k}(s, n)<\operatorname{twr}_{k-1}\left(n^{c}\right)$
Tower growth rate for $r_{4}(5, n)$ is unknown.

Lower bounds for off-diagonal hypergraph Ramsey numbers

Fixed $s \geq k+1$.
Bohman-Keevash (2010): $n^{(s+1) / 2+o(1)}<r_{2}(s, n)<n^{s-1+o(1)}$
Conlon-Fox-Sudakov (2010): $2^{c^{\prime} n \log n}<r_{3}(s, n)<2^{c n^{s-2} \log n}$
Erdős-Hajnal: $2^{2^{c^{\prime} n}}<r_{4}(7, n)<2^{2^{n^{c}}}$
Erdős-Rado (1952): $r_{5}(s, n)<2^{2^{2^{n^{c}}}}$

Erdős-Rado: $r_{k}(s, n)<\operatorname{twr}_{k-1}\left(n^{c}\right)$
Tower growth rate for $r_{4}(5, n)$ is unknown.

Lower bounds for off-diagonal hypergraph Ramsey numbers

Fixed $s \geq k+1$.
Bohman-Keevash (2010): $n^{(s+1) / 2+o(1)}<r_{2}(s, n)<n^{s-1+o(1)}$
Conlon-Fox-Sudakov (2010): $2^{c^{\prime} n \log n}<r_{3}(s, n)<2^{c n^{s-2} \log n}$
Erdős-Hajnal: $2^{2^{c^{\prime} n}}<r_{4}(7, n)<2^{2^{n^{c}}}$
MS and CFS (2015): $2^{2^{2^{c^{\prime}} n}}<r_{5}(8, n)<2^{2^{2^{n^{c}}}}$

Erdős-Rado: $r_{k}(s, n)<\operatorname{twr}_{k-1}\left(n^{c}\right)$
Tower growth rate for $r_{4}(5, n)$ is unknown.

Lower bounds for off-diagonal hypergraph Ramsey numbers

Fixed $s \geq k+1$.
Bohman-Keevash (2010): $n^{(s+1) / 2+o(1)}<r_{2}(s, n)<n^{s-1+o(1)}$
Conlon-Fox-Sudakov (2010): $2^{c^{\prime} n \log n}<r_{3}(s, n)<2^{c n^{s-2} \log n}$
Erdős-Hajnal: $2^{2^{c^{\prime} n}}<r_{4}(7, n)<2^{2^{n^{c}}}$
MS and CFS (2015): $2^{2^{2^{c^{\prime}} n}}<r_{5}(8, n)<2^{2^{2^{n^{c}}}}$

MS and CFS (2015): $\operatorname{twr}_{k-1}\left(c^{\prime} n\right)<r_{k}(k+3, n)<\operatorname{twr}_{k-1}\left(n^{c}\right)$
Tower growth rate for $r_{4}(5, n)$ is unknown.

Lower bounds for off-diagonal hypergraph Ramsey numbers

Fixed $s \geq k+1$.
Bohman-Keevash (2010): $n^{(s+1) / 2+o(1)}<r_{2}(s, n)<n^{s-1+o(1)}$
Conlon-Fox-Sudakov (2010): $2^{c^{\prime} n \log n}<r_{3}(s, n)<2^{c n^{s-2} \log n}$
Erdős-Hajnal: $2^{2^{c^{\prime} n}}<r_{4}(7, n)<2^{2^{n^{c}}}$
MS and CFS (2015): $2^{2^{2^{c^{n}}}}<r_{5}(8, n)<2^{2^{2^{c^{c}}}}$

MS and CFS (2015): $\operatorname{twr}_{k-1}\left(c^{\prime} n\right)<r_{k}(k+3, n)<\operatorname{twr}_{k-1}\left(n^{c}\right)$
What is the tower growth rate of $r_{k}(k+1, n)$ and $r_{k}(k+2, n)$?

Lower bounds for off-diagonal hypergraph Ramsey numbers

Fixed $s \geq k+1$.
Bohman-Keevash (2010): $n^{(s+1) / 2+o(1)}<r_{2}(s, n)<n^{s-1+o(1)}$
Conlon-Fox-Sudakov (2010): $2^{c^{\prime} n \log n}<r_{3}(s, n)<2^{c n^{s-2} \log n}$
Erdős-Hajnal: $2^{2^{c^{\prime} n}}<r_{4}(7, n)<2^{2^{n^{c}}}$
MS and CFS (2015): $2^{2^{2^{c^{n}}}}<r_{5}(8, n)<2^{2^{2^{c^{c}}}}$

MS and CFS (2015): $\operatorname{twr}_{k-1}\left(c^{\prime} n\right)<r_{k}(k+3, n)<\operatorname{twr}_{k-1}\left(n^{c}\right)$
What is the tower growth rate of $r_{4}(5, n)$ and $r_{4}(6, n)$?

Towards the Erdős-Hajnal conjecture

Conjecture (Erdos-Hajnal)

$$
r_{4}(5, n), r_{4}(6, n)>2^{2^{c n}}
$$

Erdős-Hajnal (1972): $r_{4}(5, n), r_{4}(6, n)>2^{c n}$
Mubayi-S. (2017): $r_{4}(5, n)>2^{n^{2}} \quad r_{4}(6, n)>2^{n^{c \log n}}$

New lower bounds for off-diagonal hypergraph Ramsey numbers

Theorem (Mubayi-S., 2018)

$$
r_{4}(5, n)>2^{n^{c^{\log n}}} \quad r_{4}(6, n)>2^{2^{c n^{1 / 5}}}
$$

for fixed $k>4$

$$
r_{k}(k+1, n)>\operatorname{twr}_{k-2}\left(n^{c \log n}\right) \quad r_{k}(k+2, n)>\operatorname{twr}_{k-1}\left(c n^{1 / 5}\right)
$$

$$
r_{k}(k+2, n)=\operatorname{twr}_{k-1}\left(n^{\Theta(1)}\right)
$$

Open problems

Diagonal Ramsey problem (\$500 Erdős):

$$
2^{c n^{2}}<r_{3}(n, n)<2^{2^{c n}}
$$

Off-diagonal Ramsey problem:

$$
2^{n^{c \log n}}<r_{4}(5, n)<2^{2^{c n}}
$$

Theorem (Mubayi-S. 2017)

Showing $r_{3}(n, n)>2^{2^{c n}}$ implies that $r_{4}(5, n)>2^{2^{c^{\prime} n}}$.

More off-diagonal?

Off diagonal hypergraph Ramsey numbers: $r_{k}(k+1, n)$
Red clique size $k+1 \quad$ or \quad Blue clique of size n.

$$
r_{k}(k, n)=n \quad \text { (trivial) }
$$

More off-diagonal?

Off diagonal hypergraph Ramsey numbers: $r_{k}(k+1, n)$
Red clique size $k+1 \quad$ or \quad Blue clique of size n.

$$
r_{k}(k, n)=n \quad \text { (trivial) }
$$

A more off diagonal Ramsey number:
Almost Red clique size $k+1 \quad$ or \quad Blue clique of size n.

Very off-diagonal

Another Ramsey function: Let $r_{k}(k+1, t ; n)$ be the minimum N, such that for every red/blue coloring of the k-tuples of $\{1,2, \ldots, N\}$,

(1) $k+1$ integers which induces at least t red k-tuples, or
(2) n integers for which every k-tuple is blue.

Very off-diagonal

Another Ramsey function: Let $r_{k}(k+1, t ; n)$ be the minimum N, such that for every red/blue coloring of the k-tuples of $\{1,2, \ldots, N\}$,

(1) $k+1$ integers which induces at least t red k-tuples, or
(2) n integers for which every k-tuple is blue.

Very off-diagonal

Another Ramsey function: Let $r_{k}(k+1, t ; n)$ be the minimum N, such that for every red/blue coloring of the k-tuples of $\{1,2, \ldots, N\}$,

(1) $k+1$ integers which induces at least t red k-tuples, or
(2) n integers for which every k-tuple is blue.

Very off-diagonal

Another Ramsey function: Let $r_{k}(k+1, t ; n)$ be the minimum N, such that for every red/blue coloring of the k-tuples of $\{1,2, \ldots, N\}$,

(1) $k+1$ integers which induces at least t red k-tuples, or
(2) n integers for which every k-tuple is blue.

Very off-diagonal

Another Ramsey function: Let $r_{k}(k+1, t ; n)$ be the minimum N, such that for every red/blue coloring of the k-tuples of $\{1,2, \ldots, N\}$,

(1) $k+1$ integers which induces at least t red k-tuples, or
(2) n integers for which every k-tuple is blue.

Very off-diagonal

Another Ramsey function: Let $r_{k}(k+1, t ; n)$ be the minimum N, such that for every red/blue coloring of the k-tuples of $\{1,2, \ldots, N\}$,

(1) $k+1$ integers which induces at least t red k-tuples, or
(2) n integers for which every k-tuple is blue.

Very off-diagonal

Another Ramsey function: Let $r_{k}(k+1, t ; n)$ be the minimum N, such that for every red/blue coloring of the k-tuples of $\{1,2, \ldots, N\}$,

(1) $k+1$ integers which induces at least t red k-tuples, or
(2) n integers for which every k-tuple is blue.

An old problem of Erdős and Hajnal 1972

Problem (Erdős-Hajnal 1972)

For $k \geq 3$ and $t \in[k+1]$, estimate $r_{k}(k+1, t ; n)$.

$$
r_{k}(k+1,1 ; n)=n
$$

$\operatorname{twr}_{k-2}\left(n^{c^{\prime} \log n}\right) \leq r_{k}(k+1, k+1 ; n)=r_{k}(k+1, n) \leq \operatorname{twr}_{k-1}\left(n^{c}\right)$

An old problem of Erdős and Hajnal 1972

Problem (Erdős-Hajnal 1972)

For $k \geq 3$ and $t \in[k+1]$, estimate $r_{k}(k+1, t ; n)$.

$$
\begin{gathered}
r_{k}(k+1,1 ; n)=n \\
r_{k}(k+1,2 ; n) \leq O\left(n^{k-1}\right)
\end{gathered}
$$

$\operatorname{twr}_{k-2}\left(n^{c^{\prime} \log n}\right) \leq r_{k}(k+1, k+1 ; n)=r_{k}(k+1, n) \leq \operatorname{twr}_{k-1}\left(n^{c}\right)$

Upper bounds

Erdős-Rado argument: $r_{k}(k+1, t ; n) \leq 2^{\left(r_{k-1}(k, t-1 ; n)\right)^{k-1}}$.

Theorem (Erdős-Hajnal 1972)

$$
r_{k}(k+1,2 ; n)<c n^{k-1}
$$

Upper bounds

Erdős-Rado argument: $r_{k}(k+1, t ; n) \leq 2^{\left(r_{k-1}(k, t-1 ; n)\right)^{k-1}}$.

Theorem (Erdős-Hajnal 1972)

$$
\begin{gathered}
r_{k}(k+1,2 ; n)<c n^{k-1} \\
r_{k}(k+1,3 ; n)<2^{n^{c}}
\end{gathered}
$$

Upper bounds

Erdős-Rado argument: $r_{k}(k+1, t ; n) \leq 2^{\left(r_{k-1}(k, t-1 ; n)\right)^{k-1}}$.

Theorem (Erdős-Hajnal 1972)

$$
\begin{gathered}
r_{k}(k+1,2 ; n)<c n^{k-1} \\
r_{k}(k+1,3 ; n)<2^{n^{c}} \\
r_{k}(k+1,4 ; n)<2^{2^{n^{c}}}
\end{gathered}
$$

Upper bounds

Erdős-Rado argument: $r_{k}(k+1, t ; n) \leq 2^{\left(r_{k-1}(k, t-1 ; n)\right)^{k-1}}$.

Theorem (Erdős-Hajnal 1972)

$$
\begin{gathered}
r_{k}(k+1,2 ; n)<c n^{k-1} \\
r_{k}(k+1,3 ; n)<2^{n^{c}} \\
r_{k}(k+1,4 ; n)<2^{2^{n^{c}}} \\
\vdots \\
r_{k}(k+1, t ; n)<\operatorname{twr}_{t-1}\left(n^{c}\right)
\end{gathered}
$$

Upper bounds

Erdős-Rado argument: $r_{k}(k+1, t ; n) \leq 2^{\left(r_{k-1}(k, t-1 ; n)\right)^{k-1}}$.

Theorem (Erdős-Hajnal 1972)

$$
\begin{gathered}
r_{k}(k+1,2 ; n)<c n^{k-1} \\
r_{k}(k+1,3 ; n)<2^{n^{c}} \\
r_{k}(k+1,4 ; n)<2^{2^{n^{c}}} \\
\vdots \\
r_{k}(k+1, k ; n)<\operatorname{twr}_{k-1}\left(n^{c}\right) \\
r_{k}(k+1, k+1 ; n)<\operatorname{twr}_{k-1}\left(n^{c}\right)
\end{gathered}
$$

Upper bounds

Erdős-Rado argument: $r_{k}(k+1, t ; n) \leq 2^{\left(r_{k-1}(k, t-1 ; n)\right)^{k-1}}$.

Theorem (Erdős-Hajnal 1972)

$$
\begin{gathered}
r_{k}(k+1,2 ; n)<c n^{k-1} \\
r_{k}(k+1,3 ; n)<2^{n^{c}} \\
r_{k}(k+1,4 ; n)<2^{2^{n^{c}}} \\
\vdots \\
r_{k}(k+1, t ; n)<\operatorname{twr}_{t-1}\left(n^{c}\right)
\end{gathered}
$$

Lower bounds

Erdős-Rado argument: $r_{k}(k+1, t ; n) \leq 2^{\left(r_{k-1}(k, t-1 ; n)\right)^{k-1}}$.
Theorem

$$
\begin{gathered}
c^{\prime} \frac{n^{k-1}}{\log n}<r_{k}(k+1,2 ; n)<c \frac{n^{k-1}}{\log n} \\
r_{k}(k+1,3 ; n)<2^{n^{c}} \\
r_{k}(k+1,4 ; n)<2^{2^{n^{c}}} \\
\vdots \\
r_{k}(k+1, t ; n)<\operatorname{twr}_{t-1}\left(n^{c}\right)
\end{gathered}
$$

Lower bounds

Erdős-Rado argument: $r_{k}(k+1, t ; n) \leq 2^{\left(r_{k-1}(k, t-1 ; n)\right)^{k-1}}$.
Theorem

$$
\begin{gathered}
c^{\prime} \frac{n^{k-1}}{\log n}<r_{k}(k+1,2 ; n)<c \frac{n^{k-1}}{\log n} \\
2^{c^{\prime} n}<r_{k}(k+1,3 ; n)<2^{n^{c}} \\
r_{k}(k+1,4 ; n)<2^{2^{n^{c}}} \\
\vdots \\
r_{k}(k+1, t ; n)<\operatorname{twr}_{t-1}\left(n^{c}\right)
\end{gathered}
$$

Lower bounds

Erdős-Rado argument: $r_{k}(k+1, t ; n) \leq 2^{\left(r_{k-1}(k, t-1 ; n)\right)^{k-1}}$.
Theorem

$$
\begin{gathered}
c^{\prime} \frac{n^{k-1}}{\log n}<r_{k}(k+1,2 ; n)<c \frac{n^{k-1}}{\log n} \\
2^{c^{\prime} n}<r_{k}(k+1,3 ; n)<2^{n^{c}} \\
2^{c^{\prime} n}<r_{k}(k+1,4 ; n)<2^{2^{n^{c}}} \\
\vdots \\
r_{k}(k+1, t ; n)<\operatorname{twr}_{t-1}\left(n^{c}\right)
\end{gathered}
$$

Lower bounds

Erdős-Rado argument: $r_{k}(k+1, t ; n) \leq 2^{\left(r_{k-1}(k, t-1 ; n)\right)^{k-1}}$.
Theorem

$$
\begin{gathered}
c^{\prime} \frac{n^{k-1}}{\log n}<r_{k}(k+1,2 ; n)<c \frac{n^{k-1}}{\log n} \\
2^{c^{\prime} n}<r_{k}(k+1,3 ; n)<2^{n^{c}} \\
2^{c^{\prime} n}<r_{k}(k+1,4 ; n)<2^{2^{n^{c}}} \\
\vdots \\
2^{c^{\prime} n}<r_{k}(k+1, t ; n)<\operatorname{twr}_{t-1}\left(n^{c}\right)
\end{gathered}
$$

New bounds for $r_{k}(k+1, t ; n)$

Improvement on the Erdős-Rado upper bound argument.

Theorem (Mubayi-S. 2018)

For $k \geq 3$, and $2 \leq t \leq k$, we have

$$
r_{k}(k+1, t ; n)<\operatorname{twr}_{t-1}\left(c n^{k-t+1} \log n\right)
$$

New bounds for $r_{k}(k+1, t ; n)$

For $3 \leq t \leq k-2$

Theorem (Mubayi-S. 2018)

For $k \geq 6$, and $3 \leq t \leq k-2$, we have

$$
\operatorname{twr}_{t-1}\left(c^{\prime} n^{k-t+1}\right)<r_{k}(k+1, t ; n)<\operatorname{twr}_{t-1}\left(c n^{k-t+1} \log n\right)
$$

when $k-t$ is even, and

New bounds for $r_{k}(k+1, t ; n)$

For $3 \leq t \leq k-2$

Theorem (Mubayi-S. 2018)

For $k \geq 6$, and $3 \leq t \leq k-2$, we have

$$
\operatorname{twr}_{t-1}\left(c^{\prime} n^{k-t+1}\right)<r_{k}(k+1, t ; n)<\operatorname{twr}_{t-1}\left(c n^{k-t+1} \log n\right)
$$

when $k-t$ is even, and

$$
\operatorname{twr}_{t-1}\left(c^{\prime} n^{(k-t+1) / 2}\right)<r_{k}(k+1, t ; n)<\operatorname{twr}_{t-1}\left(c n^{k-t+1} \log n\right)
$$

when $k-t$ is odd.

New bounds for $r_{k}(k+1, t ; n)$

For $t=k-1, k, k+1$

Theorem (Mubayi-S. 2018)

For $k \geq 6$,

$$
\begin{gathered}
\operatorname{twr}_{k-3}\left(c n^{3}\right)<r_{k}(k+1, k-1 ; n)<\operatorname{twr}_{k-2}\left(c^{\prime} n^{2} \log n\right) \\
\operatorname{twr}_{k-3}\left(c n^{3}\right)<r_{k}(k+1, k ; n)<\operatorname{twr}_{k-1}\left(c^{\prime} n \log n\right) \\
\operatorname{twr}_{k-2}\left(n^{c \log n}\right)<r_{k}(k+1, k+1 ; n)<\operatorname{twr}_{k-1}\left(c^{\prime} n^{2} \log n\right) .
\end{gathered}
$$

Open problem for 5-uniform hypergraphs

$$
2^{c^{\prime} n^{3}}<r_{5}(6,5 ; n)<2^{2^{2^{n^{c}}}}
$$

Improve the upper or lower bounds for $r_{5}(6,5 ; n)$.

Thank you!

