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A k-uniform hypergraph H = (V,E), V is the vertex set, and edge
set E C (‘:) We define a clique in H to be a sub-hypergraph for
which all k-tuples belong to E, and an independent set in H to be
a sub-hypergraph for which all k-tuples not in E.
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Introduction

Definition

We define the Ramsey number Ry (n) to be the minimum integer
N such that any N-vertex k-uniform hypergraph H contains either
a clique or an independent set of size n.

Theorem (Ramsey 1930)

For all k,n, the Ramsey number Ry(n) is finite.

Estimate Ry(n), k fixed and n — oc.
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Known estimates

Theorem (Erdés-Szekeres 1935, ErdSs 1947)

272 < Ry(n) < 2%".

A\

Theorem (Erdés-Rado 1952, Erdds-Hajnal 1960's)

207 < Ry(n) < 22",

tk_l(cn2) < Rk(n) < tk(c/n).

A\

Tower function t;(x) is given by t1(x) = x and tj;1(x) = 2409,
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Problem (Esther Klein 1930's)

Given an integer n, does there exist a number ES(n), such that
any set of at least ES(n) points in the plane in general position,
contains n members in convex position?
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ES(n) exists

V = {N points in the plane},
E = {triples having a clockwise orientation}.

Observation: Any subset of points for which every triple has the
same orientation, must be in convex position.

ES(n) < Ry(n) < 22",

Can we do better?
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ES(n) exists

1 4‘ 7 8°
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V = {N points in the plane},
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Theorem (Erdés-Szekeres 1935)

2"2 4 1< ES(n) < <2n"__24) +1=0(4"/vn).
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Theorem (Erdés-Szekeres 1935)

For any positive integers k and |, there exists an integer f(k, /),
such that any set of at least f(k,I) points in the plane in general
position, contains either a k-cup or an I-cap. Moreover

k+1—4
f(k,l):( o )+1
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Proof is very combinatorial. The only geometric fact used was the
following: Order the points from left to right {p1, ..., pn}

transitive property: If (p1, p2, p3) is a cap (cup), and (p2, p3, pa)
is a cap (cup), then p1, p2, p3, pa is a 4-cap (4-cup).

2
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transitive property:
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transitive property:
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transitive property:
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Generalizing to convex bodies

Definition

A family C of convex bodies (compact convex sets) in the plane is
said to be in convex position if none of its members is contained in
the convex hull of the union of the others. We say that C is in
general position if every three members are in convex position.
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Definition

We say that a family of convex bodies in the plane is noncrossing if
any two members share at most two boundary points.
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4

Theorem (Pach and Téth 2000)

For any positive integer n, there exists an integer NC(n), such that
any set of at least NC(n) noncrossing convex bodies in the plane
in general position must contain n members in convex position.
Moreover

2’1
272 4+1< NC(n) <2 .

NC(n) < 2°”, Hubard-Montejano-Mora-S. 2011

NC(n) < 2¢'7* 1081 Fox-Pach-Sudakov-S. 2012.
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Finding monochromatic paths in ordered hypergraphs

For an ordered 3-uniform hypergraph H = ([N], E), a monotone
3-path of length n are edges

(Vly V2, V3), (V2, V3, V4)? (V3, Vq, V5)? ceey (an2, Vn—1, Vn)-

In general, for an ordered k-uniform hypergraph H = ([N], E), a
monotone k-path of length n are edges

(v, vay ooy Vi), (V2 V3,4 ooy Vi1 ) ooy (Ve kb 1y ooy Vi)
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Ordered hypergraphs

Definition

Let Ni(g, n) denote the smallest integer N such that for every g
coloring on the k-tuples of the set [N] contains a monochromatic
monotone k-path of length n.

Na(g,n) = (n—1)9 + 1 by Dilworth’s theorem.
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Ordered hypergraphs

Definition

Let Ni(g, n) denote the smallest integer N such that for every g
coloring on the k-tuples of the set [N] contains a monochromatic
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N3(2,n) = (2:__24) + 1 by the Erd8s-Szekeres cups-caps (red-blue)
argument.
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N5(2,n) = (2::24) + 1 by the Erd8s-Szekeres cups-caps (red-blue)
argument.

Andrew Suk MIT Geometric Ramsey Theory
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For more colors.

Theorem (Fox, Pach, Sudakov, S. 2012)

For g > 3, we have

o(n/q)?* < N3(q,n) < n? 1 log n

Application: Noncrossing convex bodies problem, NC(n).

Obtain the transitive property on triples of convex bodies.

NC(n) < N3(3,n) < 2 'oen
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Proof of N3(g,n) < No(n9=1 n) < a7t — oni "t log n.
Q Set N = No(n971 n)
Q x: ([’;’]) — [q] be g-coloring on the triples of [N].
© Then define ¢ : ([';’]) — [n]97 as follows. We color
(i,J) € ([’Q’]) with color (ay, a, ..., ag—1) where a; denotes the

length of the longest monotone 3-path ending with vertices
i,j in color t.
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-1 — 2n‘7_1 logn.

Proof of Ns(g,n) < Ny(n9=1 n) < n™
Q Set N = No(n971,n)
9 x: (M) — [q] be g-coloring on the triples of [N].
© Then define ¢ : ([’;’]) — [n]971 as follows. We color
(i,j) € (M) with color (a1, ay, ..., ag_1) where a; denotes the
length of the longest monotone 3-path ending with vertices
i,j in color t.

Andrew Suk MIT Geometric Ramsey Theory
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Proof of N3(g,n) < Na(n971 n) < n™ =
Q Set N = No(n971,n)
9 x: (M) — [q] be g-coloring on the triples of [N].
© Then define ¢ : ([g/]) — [n]971 as follows. We color
(i,)) € ([g”) with color (a1, a2, ..., ag—1) where a; denotes the
length of the longest monotone 3-path ending with vertices
i,j in color t.

2n‘7_1 logn.
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-1 — 2n‘7*1 logn.

Proof of N3(g,n) < No(n9=1, n) < n™
Q Set N = No(n971 n)
Q \: ([’g]) — [q] be g-coloring on the triples of [N].
Q Then define ¢ : (IM) — [n]971 as follows. We color
(i,j) € (M) with color (a1, ay, ..., ag_1) where a; denotes the
length of the longest monotone 3-path ending with vertices
i,j in color t.
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Proof of N3(g,n) < No(n9=1 n) < a7t — onit log n.

Q Set N = No(n971 n)

Q \: ([/;/]) — [q] be g-coloring on the triples of [N].

Q Then define ¢ : (IM) — [n]9-1 as follows. We color
(i,j) € (M) with color (a1, ay, ..., ag_1) where a; denotes the
length of the longest monotone 3-path ending with vertices
i,j in color t.

(6,

o .

Andrew Suk MIT Geometric Ramsey Theory



1 — 2n‘7_1 logn.
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By definition of Ny(n9~1, n), there is monochromatic 2-path on
vertices vi < vp < ... < v, with color (af,...,aj;fl).

(3525 ... (3735 ... (3435 ...4)
./\//_\ .//_/\
\6- V2 V3 ........ vn_l vn
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Claim: (v, ..., v,) is @ monochromatic 3-path (with color g)!
Indeed, Assume (v, vj11, vit2) has color j # g.

© Longest jth-colored 3-path ending with vertices (vj, v;) must
be shorter than the longest jth-colored 3-path ending with
vertices (Vjy1, Vj4+2)-

@ Contradicts (b(v,-, V,'+1) = (b(v,'+1, V,'+2).

© Hence (vj, Vi1, viy2) must have color g for all .

*

@y..a Ay
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Claim: (v, ..., v,) is @ monochromatic 3-path (with color g)!
Indeed, Assume (v, vj11, vit2) has color j # g.

© Longest jth-colored 3-path ending with vertices (v;, v;) must
be shorter than the longest jth-colored 3-path ending with
vertices (Vjy1, Vj4+2).

@ Contradicts ¢(vj, vit1) = ¢(Viy1, Vis2).

© Hence (vj, vit1, viy2) must have color g for all .

@8 Ry @7 ,..a +1.-3-9)
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The upper bound proof can easily be generalized to show

Ni(gq,n) < Ni_1((n — k +1)971 )

Using the stepping-up approach we have

Theorem (Fox-Pach-Sudakov-S. 2012)

Define t1(x) = x and t;11(x) = 25(). Then for k > 4 we have

te—1(cn?t) < Ni(g, n) < tx—1(c'n9"  log n).

Recall Ramsey numbers:

ti_1(cn®) < Ri(n) < ti(c'n).
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Recent development

Theorem (Moshkovitz and Shapira 2013+)

For k > 3 we have

ti_1(cn9™1) < Ni(g, n) < ty_1(c’n971).

Noncrossing convex bodies problems:

2

NC(n) < 27087 = NC(n) < 2"

?
NC(n) < 2"
For k > 3,

tkfl(an) < Rk(n) < tk(c'n).

Andrew Suk MIT Geometric Ramsey Theory



Combinatorial Problem

29" < Ry(n) < 22°".

Problem

Close the gap on R3(n)

Conjecture (Erdés, $500 problem)

2*" < Rs(n)

Erdos-Hajnal Stepping Up Lemma: x < Ry(n), then
2% S Rk+1(n) for k > 3

Would imply R4(n) = 2229(,1), and Rk(n) = t,(©(n)).

Is there a geometric construction showing 22 < R3(n)?
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V = {N points in the plane in general position}
E = {triples with a clockwise orientation}

Many graphs and hypergraphs defined geometrically.
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V = {N tubes of length / and radius 1 in R9}
E = {pairs that intersect}.

Semi-algebraic hypergraphs.
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semi-algebraic sets (Tarski cell)

Definition

A set A C RY is called semi-algebraic if there are polynomials

fi,fa, ..., fr € R[xq,..., x4] and a Boolean formula ®(Xi, Xz, ..., X;),
where Xi, ..., X, are variables attaining values “true” and “false”,
such that

A= {x R O (fi(x) > 0,..., fi(x) > 0)} .

® involves unions, intersections, and complementations. Assume
Quantifier-free (Tarski's Theorem).

A has complexity at most t if d,r < t and each deg(f;) < t.

Examples: hyperplanes, balls, boxes, tubes, etc. in RY.
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Encode sets to points

Let V = {Aq,..., Ay} be a family of N semi-algebraic sets in R,
each set with complexity at most t.

N

_—
S

A = {x R O (fi(x) > 0,..., fi(x) > 0)} .

Encode each set: A; — p; € RY for g = q(t).
V ={p1,...,pn}, N points in R9.

Andrew Suk MIT Geometric Ramsey Theory



Encode sets to points

Let V = {Aq1,..., Ay} be a family of N semi-algebraic sets in RY,
each set with complexity at most t.

N
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A = {x eRY: d(f(x)>0,.... fi(x) > 0)} .

Encode each set: A; — p; € RY for g = q(t).
V ={p1,...,pn}, N points in RY.
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Encode sets to points

Let V = {Aq1,..., Ay} be a family of N semi-algebraic sets in RY,
each set with complexity at most t.
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-
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A = {x eRY: d(f(x)>0,.... fi(x) > 0)} .

Encode each set: A; — p; € RY for g = q(t).
V ={p1,...,pn}, N points in RY.
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Encode sets to points

Let V = {Aqy,..., Ay} be a family of N semi-algebraic sets in RY,
each set with complexity at most t.

N
—
S

A = {x eRY: d(f(x)>0,.... fi(x) > 0)} .

Encode each set: A; — p; € RY for g = q(t).
V ={p1,...,pn}, N points in RY.
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Semi-algebraic relation

For V = {p1,....pn} C RY, the edge set E C (}) is semi-algebraic
if E can be described with a constant number of polynomial
equations and inequalities (each of bounded degree), and a
boolean formula ®.
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Semi-algebraic relation

For V ={p1,....,pn} C RY, the edge set E C (‘,f) is semi-algebraic
if there exists a semi-algebraic set E* C R*9 with bounded
description complexity, such that for i7 < --- < iy

(Pirs s Pi) € E & (Piys s pi) € E* C RM.

(BB B
-
(15 R)

Example: For k = 3 look at all triples (pj,, pi,, piy) in R39.

Call the pair (V, E) a semi-algebraic k-uniform hypergraph (with
bounded description complexity).
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V ={A;1,...,An}, N disks in the plane. E = {pairs of disks that
intersect}.
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V = {A1,...,An}, N disks in the plane. E = {pairs of disks that

intersect}.
(%Y .14)
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D
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V ={A;1,...,An}, N disks in the plane. E = {pairs of disks that
intersect}.

Andrew Suk MIT Geometric Ramsey Theory



V ={A;1,...,An}, N disks in the plane. E = {pairs of disks that
intersect}.

Ai = pi = (xi,¥i, i), Aj = pj = (X}, yj,rj). Ai and A; cross if and
only if

—x,-2 + 2x; X — XJ-2 —y,-2 + 2yiy; —yj2 =+ r,-2 + 2rirj + rj2 > 0.
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V ={A1,...,An}, N disks in the plane. E = { pairs of disks that

intersect}.
(%Y 1)
()
G C

(V, E) is semi-algebraic graph,
E*={(z1,...,26) €R®: f(z1,...,25) > 0}, where

F(z1,...,26) = —27 + 22124 — 23 — 23 + 22025 — 22 + 25 + 2232 + 2.

(pi,pj) € E < (pi,pj) € E™.
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More examples

Examples
Q@ V = {N circles in R3}
E = {pairs that are linked}.

@ V = {N hyperplanes in R in general position},
E = {d-tuples whose intersection point is above the
hyperplane x; = 0}.

X4=0
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Definition: Let R;*™ (n) be the minimum integer N such that any
N-vertex semi-algebraic k-uniform hypergraph H = (V/, E) contains
either a clique or an independent set of size n. R*™(n) < Ri(n).

Theorem (Alon, Pach, Pinchasi, Radoiti¢, Sharir 2005)

R5*™ (n) < n.

Applying Milnor-Thom Theorem and Cutting Lemma:

Theorem (Conlon, Fox, Pach, Sudakov, S. 2012)

for k > 3, .
tk—1(can) < RE™(n) < te_1(n?).

Recall: for k >3, tx_1(cn?) < Ri(n) < tx(c'n).

Andrew Suk MIT Geometric Ramsey Theory



Theorem (Conlon, Fox, Pach, Sudakov, S. 2012)

for k > 3, .
tk_l(c2n) < R;eml(n) < tk_l(ncl).

Several applications...
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Problem (Matouek-Welzl 1992, Dujmovié¢-Langerman 2011,

Matousek-Elias 2012.)

Determine the minimum integer OSHy(n), such that any family of
at least OSHy(n) hyperplanes in RY in general position, must
contain n members such that every d-tuple intersects on one-side
of the hyperplane x4 = 0.

OSH,(n) = ©(n?), OSHy(n) < Ry(n) < tg(c'n).

V = {N hyperplanes},
E = {d-tuples that intersect above x4 = 0 hyperplane}.
New bound: OSHy(n) < R$™(n) < tg_1(n%)

<

Xd=0
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Combinatorial Problem

Ramsey number of 3-uniform hypergraphs.

2" < Ry(n) < 22",

Conjecture (Erdés)

22" < Rs(n)

Is there a geometric construction showing 22 < R3(n)?

Our Result: R§*™(n) < 2.
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Regularity lemma for semi-algebraic graphs (and hypergraphs).

Lemma (Regularity Lemma, Szemerédi)

Let G = (V,E) be an N-vertex graph with eN? edges. Then there
exists a partition V = { Vi, ..., V\} into M(e) equal parts, such
that all but at most e("é’) pairs of parts are regular.
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Regularity lemma for semi-algebraic graphs (and hypergraphs).

Lemma (Regularity Lemma, Szemerédi)

Let G = (V,E) be an N-vertex graph with eN? edges. Then there
exists a partition V = { V1, ..., Viy} into M(€) equal parts, such
that all but at most e('\;’) pairs of parts are regular.
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Future work

Regularity lemma for semi-algebraic graphs (and hypergraphs).

Lemma (Regularity Lemma, Szemerédi)

Let G = (V,E) be an N-vertex graph with eN? edges. Then there
exists a partition V = { V1, ..., Viy} into M(€) equal parts, such
that all but at most e('\;’) pairs of parts are regular.
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Regularity lemma for semi-algebraic graphs (and hypergraphs).

Lemma (Regularity Lemma, Szemerédi)

Let G = (V,E) be an N-vertex graph with eN? edges. Then there
exists a partition V.= { Vi, ..., Vp} into M(e) equal parts, such
that all but at most e("é’) pairs of parts are regular.

Szemerédi: M(e) < t%(2).
Semi-algebraic graphs:
4] regular complete or empty.

@ M) < L.

Attack other problems in discrete geometry in a semi-algebraic
setting.
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Unit distance problem in R? and R3.

Conjecture (Erdds, $500)

Given N points in the plane, no more than N1t</1glogN pairs can
be unit distance apart.

V = {N points in the plane}
E = {Pairs that are a unit distance apart}
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Thank youl!
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@ Milnor-Thom theorem: M bounded degree surfaces
partitions R? into O(M9) cells.

@ Cutting lemma (Chazelle, Edelsbrunner, Guibas, Sharir):
Given M bounded degree surfaces ¥ in R9 and integer r, we
can partition R9 into O(r?9) “simple” regions (cells) such
that each cell is “crossed” by O(M/r) surfaces from X.
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© Milnor-Thom theorem: M bounded degree surfaces
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@ Milnor-Thom theorem: M bounded degree surfaces
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Given M bounded degree surfaces ¥ in R9 and integer r, we
can partition R9 into O(r?9) “simple” regions (cells) such
that each cell is “crossed” by O(M/r) surfaces from X.
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Key Theorem

Getting an exponential improvement.
Re™(n) < ty_1(n°).

Combining a combinatorial argument 4+ the Milnor-Thom theorem
+ cutting lemma,

Theorem (Conlon, Fox, Pach, Sudakov, S. 2012)

REE (n) < 20RE™ ()

R2semi(n) < n¢ Rgemi(n) < 2nC1

Rsemi(n) < 22 ..
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Semi-algebraic k-uniform hypergraph H = (V, E),
V = {pr, ..o} C RY,

E* ={(x1,..., xk) C RK9 - O(fi(x1y ey xk) > 0, ey fe(x1, oy xk) > 0)}

Every k — 1-tuple of points, pj,, ..., pi,_,, gives rise to t bounded
degree surfaces in RY.

{f(Piyy s Pi_yoxk) = 0}, oo, {Fe(pPiys - Py > Xk) = 0} C RY.

Andrew Suk MIT Geometric Ramsey Theory



(pila piz, ceey Pik) S E??

Big,.. P.k 1 ‘

Sign pattern (fl(pi17pi27 veey pik)a veey ft(pi17pi27 veey Pik))- le.
(+,-+.0,+,+).

E* ={(x1,..., xk) C R29 - D(f(x1y o Xk) > 0, ey fe(x1, oy xk) > 0)}
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Our problem is about: N points in R and M = t(k’ill) bounded
degree surfaces in RY.
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