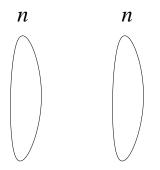
Density-type theorems for semi-algebraic hypergraphs

Jacob Fox (MIT), Janos Pach (EPFL), Andrew Suk (UIC)

November 13, 2014

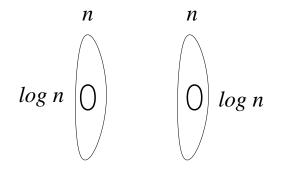
An old Ramsey-type result, Kövári, Sós, and Turán and Erdős

Bipartite graph G, edge set E.



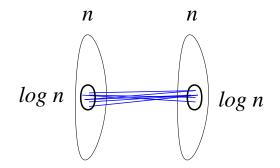
An old Ramsey-type result, Kövári, Sós, and Turán and Erdős

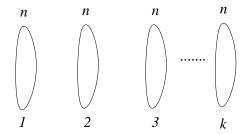
Bipartite graph G, edge set E.

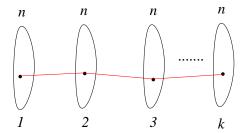


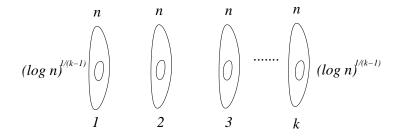
An old Ramsey-type result, Kövári, Sós, and Turán and Erdős

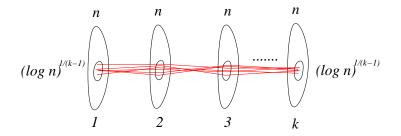
Bipartite graph G, edge set E.



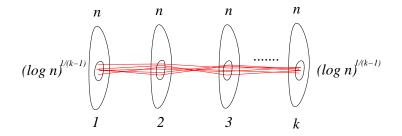




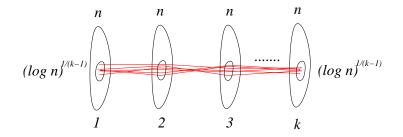




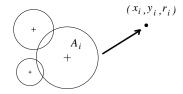
These results are tight.

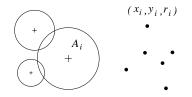


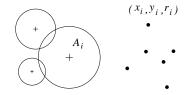
In this talk: We can do much better if H is a semi-algebraic k-uniform hypergraph.



Semi-algebraic hypergraphs: $V = \{\text{simple geometric objects in } \mathbb{R}^d\}$, $E = \{\text{simple relation on } k \text{ tuples of } V\}$.

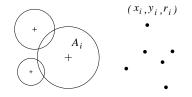






 $A_i \rightarrow p_i = (x_i, y_i, r_i), A_j \rightarrow p_j = (x_j, y_j, r_j).$ A_i and A_j cross if and only if

$$-x_i^2 + 2x_ix_j - x_j^2 - y_i^2 + 2y_iy_j - y_j^2 + r_i^2 + 2r_ir_j + r_j^2 \ge 0.$$



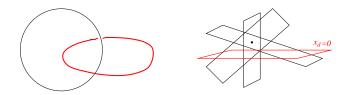
Graph G = (V, E), V = n points in \mathbb{R}^3 *E* defined by the polynomial

$$\begin{aligned} f(z_1,...,z_6) &= -z_1^2 + 2z_1z_4 - z_4^2 - z_2^2 + 2z_2z_5 - z_5^2 + z_3^2 + 2z_3z_6 + z_6^2. \\ (p_i,p_j) &\in E \Leftrightarrow f(p_i,p_j) \geq 0. \end{aligned}$$

More examples of semi-algebraic hypergraphs

Examples

- $V = \{n \text{ circles in } \mathbb{R}^3\}$ $E = \{\text{pairs that are linked}\}.$
- V = {n hyperplanes in ℝ^d in general position},
 E = {d-tuples whose intersection point is above the hyperplane x_d = 0}.

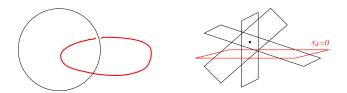


More examples of semi-algebraic hypergraphs

Examples

- $V = \{n \text{ circles in } \mathbb{R}^3\} \rightarrow n \text{ points in higher dimensions.}$ $E = \{\text{pairs that are linked}\} \rightarrow \text{polynomials } f_1, ..., f_t.$

 $E = \{d$ -tuples whose intersection point is above the hyperplane $x_d = 0\} \rightarrow \text{polynomials } f_1, ..., f_t$.



We say that H = (V, E) is a semi-algebraic k-uniform hypergraph in d-space if

$$V = \{n \text{ points in } \mathbb{R}^d\}$$

E defined by polynomials $f_1, ..., f_t$ and a Boolean formula Φ such that

$$(p_{i_1},...,p_{i_k})\in E$$

$$\Leftrightarrow \Phi(f_1(p_{i_1},...,p_{i_k}) \geq 0,...,f_t(p_{i_1},...,p_{i_k}) \geq 0) = \mathsf{yes}$$

3-uniform hypergraph H = (V, E), $V = \{p_1, ..., p_n\}$ points in \mathbb{R}^d . Relation $E \subset {V \choose 3}$ depends on f and Φ

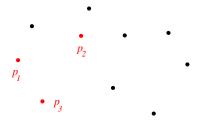
 $\phi(f(x_1, x_2, x_3) \ge 0) = \{\text{yes,no}\}$

 $(p_1, p_2, p_3) \in E$ depends on $f(p_1, p_2, p_3) \rightarrow \{+, -, 0\}.$

3-uniform hypergraph H = (V, E), $V = \{p_1, ..., p_n\}$ points in \mathbb{R}^d . Relation $E \subset {V \choose 3}$ depends on f and Φ

 $\phi(f(x_1, x_2, x_3) \ge 0) = \{\text{yes,no}\}$

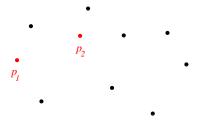
 $(p_1, p_2, p_3) \in E$ depends on $f(p_1, p_2, p_3) \rightarrow \{+, -, 0\}.$



3-uniform hypergraph H = (V, E), $V = \{p_1, ..., p_n\}$ points in \mathbb{R}^d . Relation $E \subset {V \choose 3}$ depends on f and Φ

$$\phi(f(x_1, x_2, x_3) \ge 0) = \{\text{yes,no}\}$$

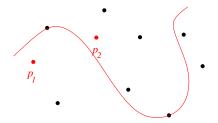
Zero set $f(p_1, p_2, x_3) = 0$, surface in \mathbb{R}^d .



3-uniform hypergraph H = (V, E), $V = \{p_1, ..., p_n\}$ points in \mathbb{R}^d . Relation $E \subset {V \choose 3}$ depends on f and Φ

$$\phi(f(x_1, x_2, x_3) \ge 0) = \{\text{yes,no}\}$$

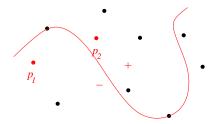
Zero set $f(p_1, p_2, x_3) = 0$, surface in \mathbb{R}^d .



3-uniform hypergraph $H = (V, E), V = \{p_1, ..., p_n\}$ points in \mathbb{R}^d . Relation $E \subset \binom{V}{3}$ depends on f and Φ

$$\phi(f(x_1, x_2, x_3) \ge 0) = \{\text{yes,no}\}$$

Zero set $f(p_1, p_2, x_3) = 0$, surface in \mathbb{R}^d .



E has complexity (t, D), degree of $f(p_1, p_2, x_3) \leq D$.

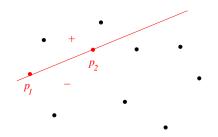
 $x_i \in \mathbb{R}^d$

- E has complexity (t, D)
 - **(**) described by polynomials $f_1, ..., f_t$,
 - and the degree of ALL kt d-variate polynomials
 f_i(x₁, ..., x_{k-1}, x_k), f_i(x₁, ..., x_{k-2}, x_{k-1}, x_k), ..., f_i(x₁, x₂, ..., x_k),
 for i = 1...t, is at most D.

Note. f_i has degree at most Dk.

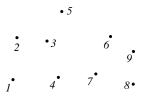
Motivation: Orientations and order-types

Our motivation, E is related to order-types and orientations. $f(p_1, p_2, x_3)$ is linear.



E has complexity (t, D) = (t, 1).

$$V = \{n \text{ points in the plane}\},\ E = \{\text{triples having a clockwise orientation}\}.\ H = (V, E)$$
 semi-algebraic 3-uniform hypergraph in the plane $(d = 2)$

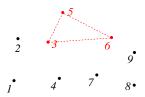


$$V = \{n \text{ points in the plane}\},\$$

$$E = \{\text{triples having a clockwise orientation}\}.$$

$$H = (V, E) \text{ semi-algebraic 3-uniform hypergraph in the plane}$$

$$(d = 2)$$

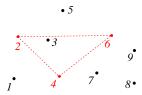


$$V = \{n \text{ points in the plane}\},\$$

$$E = \{\text{triples having a clockwise orientation}\}.$$

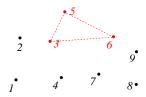
$$H = (V, E) \text{ semi-algebraic 3-uniform hypergraph in the plane}$$

$$(d = 2)$$



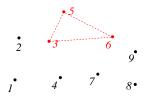
$$V = \{n \text{ points in the plane}\},\ E = \{\text{triples having a clockwise orientation}\}.$$

 $H = (V, E)$ semi-algebraic 3-uniform hypergraph in the plane $(d = 2)$

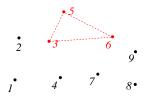


 $E = \{ triples having a clockwise orientation \}.$

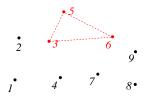
$$det \left(\begin{array}{rrr} 1 & 1 & 1 \\ x_1 & x_2 & x_3 \\ y_1 & y_2 & y_3 \end{array} \right) > 0.$$



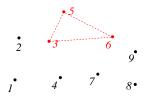
$$det \left(\begin{array}{rrr} 1 & 1 & 1 \\ x_1 & x_2 & x_3 \\ y_1 & y_2 & y_3 \end{array} \right) > 0.$$



$$det \begin{pmatrix} 1 & 1 & 1 \\ x_1 & x_2 & x_3 \\ y_1 & y_2 & y_3 \end{pmatrix} > 0$$



$$det \begin{pmatrix} 1 & 1 & 1 \\ x_1 & x_2 & x_3 \\ y_1 & y_2 & y_3 \end{pmatrix} > 0$$



$$det \begin{pmatrix} 1 & 1 & 1 \\ x_1 & x_2 & x_3 \\ y_1 & y_2 & y_3 \end{pmatrix} > 0$$

E = (d + 1)-tuples with a positive orientation, complexity (t, D) = (1, 1).

$$\det \begin{pmatrix} 1 & 1 & \cdots & 1 \\ | & | & \cdots & | \\ p_{i_1} & p_{i_2} & \vdots & p_{i_{d+1}} \\ | & | & \cdots & | \end{pmatrix} > 0.$$

E = (d + 1)-tuples with a positive orientation, complexity (t, D) = (1, 1).

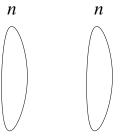
$$\det \begin{pmatrix} 1 & 1 & \cdots & 1 \\ | & | & \cdots & | \\ p_{i_1} & p_{i_2} & \vdots & p_{i_{d+1}} \\ | & | & \cdots & | \end{pmatrix} > 0.$$

E = (d + 1)-tuples with a positive orientation, complexity (t, D) = (1, 1).

$$\det \begin{pmatrix} 1 & 1 & \cdots & 1 \\ | & | & \cdots & | \\ p_{i_1} & p_{i_2} & \vdots & p_{i_{d+1}} \\ | & | & \cdots & | \end{pmatrix} > 0.$$

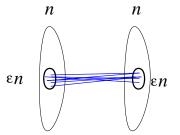
Theorem (Alon, Pach, Pinchasi, Radoicic, Sharir 2005)

Let $H = (V_1, V_2, E)$ be a bipartite semi-algebraic graph (k = 2) in *d*-space, where $|V_1| = |V_2| = n$ and *E* has complexity (t, D). Then there are subsets $V'_1, V'_2 \subset V$ such that $|V'_i| \ge \epsilon n$ and either $(V'_1, V'_2) \subset E$ or $(V'_1, V'_2) \subset \overline{E}$, and $\epsilon = \epsilon(d, t, D)$.



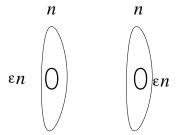
Theorem (Alon, Pach, Pinchasi, Radoicic, Sharir 2005)

Let $H = (V_1, V_2, E)$ be a bipartite semi-algebraic graph (k = 2) in *d*-space, where $|V_1| = |V_2| = n$ and *E* has complexity (t, D). Then there are subsets $V'_1, V'_2 \subset V$ such that $|V'_i| \ge \epsilon n$ and either $(V'_1, V'_2) \subset E$ or $(V'_1, V'_2) \subset \overline{E}$, and $\epsilon = \epsilon(d, t, D)$.



Theorem (Alon, Pach, Pinchasi, Radoicic, Sharir 2005)

Let $H = (V_1, V_2, E)$ be a bipartite semi-algebraic graph (k = 2) in *d*-space, where $|V_1| = |V_2| = n$ and *E* has complexity (t, D). Then there are subsets $V'_1, V'_2 \subset V$ such that $|V'_i| \ge \epsilon n$ and either $(V'_1, V'_2) \subset E$ or $(V'_1, V'_2) \subset \overline{E}$, and $\epsilon = \epsilon(d, t, D)$.

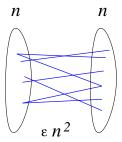


Stronger density theorem

Including an argument of Komlos:

Theorem (Alon, Pach, Pinchasi, Radoicic, Sharir 2005)

Let $H = (V_1, V_2, E)$ be a bipartite semi-algebraic graph (k = 2) in *d*-space, where $|V_1| = |V_2| = n$ and *E* has complexity (t, D). If $|E| \ge \epsilon n^2$, then there are subsets $V'_1, V'_2 \subset V$ such that $|V'_i| \ge \epsilon^C n$ where C = C(d, t, D), and $(V'_1, V'_2) \subset E$.

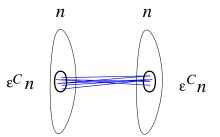


Stronger density theorem

Including an argument of Komlos:

Theorem (Alon, Pach, Pinchasi, Radoicic, Sharir 2005)

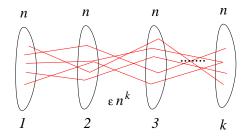
Let $H = (V_1, V_2, E)$ be a bipartite semi-algebraic graph (k = 2) in *d*-space, where $|V_1| = |V_2| = n$ and *E* has complexity (t, D). If $|E| \ge \epsilon n^2$, then there are subsets $V'_1, V'_2 \subset V$ such that $|V'_i| \ge \epsilon^C n$ where C = C(d, t, D), and $(V'_1, V'_2) \subset E$.



Generalization

Theorem (Fox, Gromov, Lafforgue, Naor, Pach 2012, Bukh and Hubard 2012)

Let $H = (V_1, ..., V_k, E)$ be a k-partite semi-algebraic k-uniform hypergraph in d-space, where $|V_1| = \cdots = |V_k| = n$ and E has complexity (t, D). If $|E| \ge \epsilon n^k$, then there are subsets $V'_1, ..., V'_k \subset V$ such that $|V'_i| \ge \epsilon^C n$ where C = C(k, d, t, D), and $(V'_1, ..., V'_k) \subset E$.



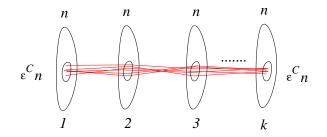
Jacob Fox (MIT), Janos Pach (EPFL), Andrew Suk (UIC) Densi

Density-type theorems for semi-algebraic hypergraphs

Generalization

Theorem (Fox, Gromov, Lafforgue, Naor, Pach 2012, Bukh and Hubard 2012)

Let $H = (V_1, ..., V_k, E)$ be a k-partite semi-algebraic k-uniform hypergraph in d-space, where $|V_1| = \cdots = |V_k| = n$ and E has complexity (t, D). If $|E| \ge \epsilon n^k$, then there are subsets $V'_1, ..., V'_k \subset V$ such that $|V'_i| \ge \epsilon^C n$ where C = C(k, d, t, D), and $(V'_1, ..., V'_k) \subset E$.



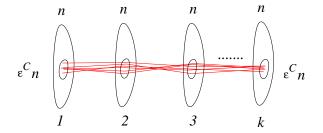
Jacob Fox (MIT), Janos Pach (EPFL), Andrew Suk (UIC)

Density-type theorems for semi-algebraic hypergraphs

Generalization

C(k, d, t, D): Dependency on uniformity k is very bad.

Bukh-Hubard: $C(k, d, t, D) \sim 2^{2^{k+d}}$, double exponential in k.



Bukh-Hubard: Set sizes decay triple exponentially in k

Jacob Fox (MIT), Janos Pach (EPFL), Andrew Suk (UIC) De

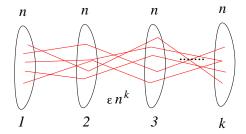
Density-type theorems for semi-algebraic hypergraphs

New results

For simplicity, complexity (t, D) is fixed.

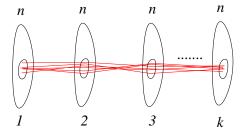
Theorem (Fox, Pach, S., 2014)

Let $H = (V_1, ..., V_k, E)$ be a k-partite semi-algebraic k-uniform hypergraph in d-space, where $|V_1| = \cdots = |V_k| = n$ and E has complexity (t, D). If $|E| \ge \epsilon n^k$, then there are subsets $V'_1, ..., V'_k \subset V$ such that $|V'_i| \ge \frac{\epsilon^{d^c}}{2^{ckd^c}}n$, and $(V'_1, ..., V'_k) \subset E$.



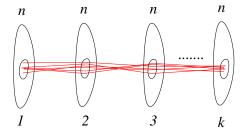
Theorem (Fox, Pach, S., 2014)

Let $H = (V_1, ..., V_k, E)$ be a k-partite semi-algebraic k-uniform hypergraph in d-space, where $|V_1| = \cdots = |V_k| = n$ and E has complexity (t, D). If $|E| \ge \epsilon n^k$, then there are subsets $V'_1, ..., V'_k \subset V$ such that $|V'_i| \ge \frac{\epsilon^{d^c}}{2^{ckd^c}}n$, and $(V'_1, ..., V'_k) \subset E$.



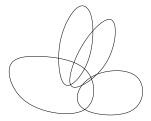
Theorem (Fox, Pach, S., 2014)

Let $H = (V_1, ..., V_k, E)$ be a k-partite semi-algebraic k-uniform hypergraph in d-space, where $|V_1| = \cdots = |V_k| = n$ and E has complexity (t, 1). If $|E| \ge \epsilon n^k$, then there are subsets $V'_1, ..., V'_k \subset V$ such that $|V'_i| \ge \frac{\epsilon^{d+1}}{2^{ckd \log d}}n$, and $(V'_1, ..., V'_k) \subset E$.



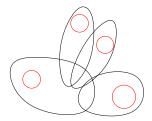
Let $P_1, P_2, ..., P_{d+1} \subset \mathbb{R}^d$ be disjoint n-element point sets with $P_1 \cup \cdots \cup P_{d+1}$ in general position. Then there is a point $q \in \mathbb{R}^d$ and subsets $P'_1 \subset P_1, ..., P'_{d+1} \subset P_{d+1}$, with

$$|P_i'| \ge 2^{-2^{2^{O(d)}}} n$$



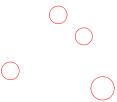
Let $P_1, P_2, ..., P_{d+1} \subset \mathbb{R}^d$ be disjoint n-element point sets with $P_1 \cup \cdots \cup P_{d+1}$ in general position. Then there is a point $q \in \mathbb{R}^d$ and subsets $P'_1 \subset P_1, ..., P'_{d+1} \subset P_{d+1}$, with

$$|P_i'| \ge 2^{-2^{2^{O(d)}}} n$$



Let $P_1, P_2, ..., P_{d+1} \subset \mathbb{R}^d$ be disjoint n-element point sets with $P_1 \cup \cdots \cup P_{d+1}$ in general position. Then there is a point $q \in \mathbb{R}^d$ and subsets $P'_1 \subset P_1, ..., P'_{d+1} \subset P_{d+1}$, with

$$|P_i'| \ge 2^{-2^{2^{O(d)}}} n$$

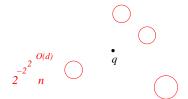


Let $P_1, P_2, ..., P_{d+1} \subset \mathbb{R}^d$ be disjoint n-element point sets with $P_1 \cup \cdots \cup P_{d+1}$ in general position. Then there is a point $q \in \mathbb{R}^d$ and subsets $P'_1 \subset P_1, ..., P'_{d+1} \subset P_{d+1}$, with

$$|P_i'| \ge 2^{-2^{2^{O(d)}}} n$$

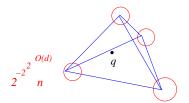
Let $P_1, P_2, ..., P_{d+1} \subset \mathbb{R}^d$ be disjoint n-element point sets with $P_1 \cup \cdots \cup P_{d+1}$ in general position. Then there is a point $q \in \mathbb{R}^d$ and subsets $P'_1 \subset P_1, ..., P'_{d+1} \subset P_{d+1}$, with

$$|P_i'| \ge 2^{-2^{2^{O(d)}}} n$$



Let $P_1, P_2, ..., P_{d+1} \subset \mathbb{R}^d$ be disjoint n-element point sets with $P_1 \cup \cdots \cup P_{d+1}$ in general position. Then there is a point $q \in \mathbb{R}^d$ and subsets $P'_1 \subset P_1, ..., P'_{d+1} \subset P_{d+1}$, with

$$|P_i'| \ge 2^{-2^{2^{O(d)}}} n$$



$$|P_i'| \ge 2^{-2^{2^{O(d)}}} n,$$

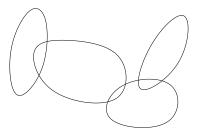
Theorem (Fox, Pach, S., 2014)

Let $P_1, P_2, ..., P_{d+1} \subset \mathbb{R}^d$ be disjoint n-element point sets with $P_1 \cup \cdots \cup P_{d+1}$ in general position. Then there is a point $q \in \mathbb{R}^d$ and subsets $P'_1 \subset P_1, ..., P'_{d+1} \subset P_{d+1}$, with

$$|P_i'| \geq 2^{-O(d^2 \log d)} n,$$

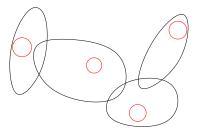
Let $P_1, ..., P_k$ be n-element point sets in \mathbb{R}^d such that $P_1 \cup \cdots \cup P_k$ is in general position. Then there are subsets $P'_1 \subset P_1, ..., P'_k \subset P_k$ such that the k-tuple $(P'_1, ..., P'_k)$ has same-type transversals and

$$|P_i'| \ge 2^{-k^{O(d)}} n,$$



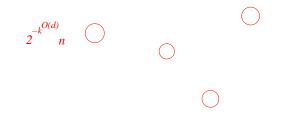
Let $P_1, ..., P_k$ be n-element point sets in \mathbb{R}^d such that $P_1 \cup \cdots \cup P_k$ is in general position. Then there are subsets $P'_1 \subset P_1, ..., P'_k \subset P_k$ such that the k-tuple $(P'_1, ..., P'_k)$ has same-type transversals and

$$|P_i'| \ge 2^{-k^{O(d)}} n,$$



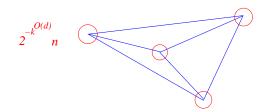
Let $P_1, ..., P_k$ be n-element point sets in \mathbb{R}^d such that $P_1 \cup \cdots \cup P_k$ is in general position. Then there are subsets $P'_1 \subset P_1, ..., P'_k \subset P_k$ such that the k-tuple $(P'_1, ..., P'_k)$ has same-type transversals and

$$|P_i'| \ge 2^{-k^{O(d)}} n,$$



Let $P_1, ..., P_k$ be n-element point sets in \mathbb{R}^d such that $P_1 \cup \cdots \cup P_k$ is in general position. Then there are subsets $P'_1 \subset P_1, ..., P'_k \subset P_k$ such that the k-tuple $(P'_1, ..., P'_k)$ has same-type transversals and

$$|P_i'| \ge 2^{-k^{O(d)}} n,$$



$$|P_i'| \ge 2^{-k^{O(d)}} n,$$

Theorem (Fox, Pach, S., 2014)

Let $P_1, ..., P_k$ be n-element point sets in \mathbb{R}^d such that $P_1 \cup \cdots \cup P_k$ is in general position. Then there are subsets $P'_1 \subset P_1, ..., P'_k \subset P_k$ such that the k-tuple $(P'_1, ..., P'_k)$ has same-type transversals and

$$|P_i'| \ge 2^{-O(d^3k\log k)}n,$$

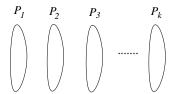
Theorem (Fox, Pach, S., 2014)

Let $P_1, ..., P_k$ be n-element point sets in \mathbb{R}^d such that $P_1 \cup \cdots \cup P_k$ is in general position. Then there are subsets $P'_1 \subset P_1, ..., P'_k \subset P_k$ such that the k-tuple $(P'_1, ..., P'_k)$ has same-type transversals and

$$|P_i'| \geq 2^{-O(d^3k \log k)}n,$$

for all i.

Sketch proof.



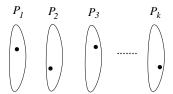
Theorem (Fox, Pach, S., 2014)

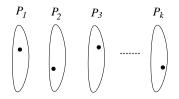
Let $P_1, ..., P_k$ be n-element point sets in \mathbb{R}^d such that $P_1 \cup \cdots \cup P_k$ is in general position. Then there are subsets $P'_1 \subset P_1, ..., P'_k \subset P_k$ such that the k-tuple $(P'_1, ..., P'_k)$ has same-type transversals and

$$|P_i'| \ge 2^{-O(d^3k\log k)}n_i$$

for all i.

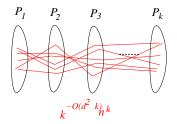
Sketch proof.





Goodman-Pollack: Number of different order-types of k-element point sets in d dimensions is at most $k^{O(d^2k)}$.

There exists an order type π , such that at least $k^{-O(d^2k)}n^k$ (rainbow) k-tuples have order type π .

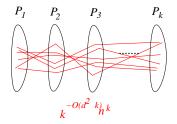


k-partite *k*-uniform semi-algebraic hypergraph $H = (P_1, ..., P_k, E)$ in *d*-space

 $E = \{k - \text{tuples with order type } \pi\}. |E| \ge k^{-O(d^2k)}n^k.$ Complexity of *E*? To check if $(p_1, ..., p_k)$ has order π , just check the orientation of each (d + 1)-tuple. For each $p_{i_1}, ..., p_{i_{d+1}}$

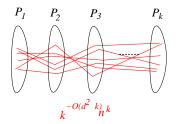
$$\det \begin{pmatrix} 1 & 1 & \cdots & 1 \\ | & | & \cdots & | \\ p_{i_1} & p_{i_2} & \vdots & p_{i_{d+1}} \\ | & | & \cdots & | \end{pmatrix} \to \{+, -\}.$$

Hence we need to check $t = \binom{k}{d+1}$ polynomial inequalities. Complexity of *E* is $(t, D) = \binom{k}{d+1}, 1$.



k-partite *k*-uniform semi-algebraic hypergraph $H = (P_1, ..., P_k, E)$ in *d*-space.

$$\epsilon = k^{-O(d^2k)}, t = \binom{k}{d+1}, D = 1$$



k-partite *k*-uniform semi-algebraic hypergraph $H = (P_1, ..., P_k, E)$ in *d*-space.

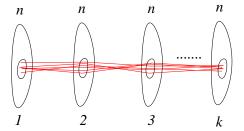
$$\epsilon = k^{-O(d^2k)}, t = {k \choose d+1}, D = 1$$

 $|P'_i| \ge 2^{-O(d^3k\log k)}n,$

Density theorem (restated)

Theorem (Fox, Pach, S., 2014)

Let $H = (V_1, ..., V_k, E)$ be a k-partite semi-algebraic k-uniform hypergraph in d-space, where $|V_1| = \cdots = |V_k| = n$ and E has complexity (t, D). If $|E| \ge \epsilon n^k$, then there are subsets $V'_1, ..., V'_k \subset V$ such that $|V'_i| \ge \frac{\epsilon^{d^c}}{2^{ckd^c}}n$, and $(V'_1, ..., V'_k) \subset E$.



Jacob Fox (MIT), Janos Pach (EPFL), Andrew Suk (UIC) Density-type theorems for semi-algebraic hypergraphs

- Find more applications.
- Extend results to more complicated relations, i.e., Semi-Pfaffian, o-minimal, etc.

Thank you!

Jacob Fox (MIT), Janos Pach (EPFL), Andrew Suk (UIC) Density-type theorems for semi-algebraic hypergraphs