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Definition

A topological graph is a graph drawn in the plane with vertices
represented by points and edges represented by curves connecting
the corresponding points. A topological graph is simple if every
pair of its edges intersect at most once.
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Crossing edges

Two edges in a topological graph cross if they have a common
interior point.
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Planar graphs

Application of Euler's Polyhedral formula:

Every n-vertex topological graph with no crossing edges contains
at most 3n — 6 = O(n) edges.

Andrew Suk Extremal problems in topological graph theory



Relaxation of planarity.

Every n-vertex topological graph with no k pairwise crossing edges
contains at most O(n) edges.

All such graphs are called k-quasi-planar.
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Every n-vertex k-quasi-planar graph has at most O(n) edges.

Generated a lot of research, 1990's - present, different variations.

Conjecture has been proven for

© k = 3 by Pach, Radoici¢, Téth 2003, Ackerman and Tardos
2007.

O k =4 by Ackerman 2008.
Open for k > 5.
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Best known bound for kK > 5

Theorem (Pach, Radoi¢i¢, Téth 2003)

Every n-vertex k-quasi-planar graph has at most n(log n)*—12

edges.

As an application of a separator Theorem by Matousek 2013:

Theorem (Fox and Pach 2013)

Every n-vertex k-quasi-planar graph has at most n(log n)©(l°g )
edges.
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Best known bound for kK > 5

Theorem (Fox and Pach 2013)

Every n-vertex k-quasi-planar graph has at most n(log n)©(l°g )
edges.

Two edges may cross n" times.
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Best known bound for kK > 5

Theorem (Fox and Pach 2013)

Every n-vertex k-quasi-planar graph has at most n(log n)©(l°g )
edges.

Suk and Walczak 2013: We improve this bound in two special
cases.
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Two result from

A. Suk, B. Walczak, New bounds on the maximum number of
edges in k-quasi-planar graphs, 21st International Symposium on
Graph Drawing (GD '13). Bordeaux France, 2013.
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Special Case 1

@ G is an n-vertex k-quasi planar graph,

@ extra condition: every pair of edges have at most t (say
1000) points in common.

o |[E(G)| < n(log n)°U°8 k) Fox and Pach 2008

Theorem (Suk and Walczak 2013)

Every n-vertex k-quasi-planar graph with no two edges having more
than t points in common, has at most ck7t2o‘(”)(n log n) edges.

a(n) denotes the inverse Ackermann function (very slow).
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Special Case 1

@ G is an n-vertex k-quasi planar graph,

@ extra condition: every pair of edges have at most t (say
1000) points in common.

o |E(G)| < n(log n)©(°ek)  Fox and Pach 2008

Theorem (Suk and Walczak 2013)

Every n-vertex k-quasi-planar graph with no two edges having more
than t points in common, has at most ¢ +2°(") (nlog n) edges.

Main tool: A Theorem on Genearlized Davenport-Schinzel
sequences.
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Special Case 2

G is a simple k-quasi-planar graph:
7< <
O |E(G)| < n(log n)°®), Pach, Shahrokhi, Szegedy 1996.

O |E(G)| < n(log n)O(lee k) Fox and Pach 2008.
O |E(G)| < 2" n(log n), Fox, Pach, Suk 2012.
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Special Case 2

|E(G)| < ck2 n(log n), Fox, Pach, Suk 2012.
Using new/different methods:

Theorem (Suk and Walczak 2013)

Every n-vertex simple k-quasi-planar graph has at most O(nlog n)
edges.
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G = (V, E) k-quasi-planar graph.
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E is a family of |E(G)| curves in the plane, no k pairwise

(I
\
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Conjecture (Coloring conjecture)

Let F be a family of curves in the plane such that no k members
pairwise intersect. Then x(F) < c.

Color the curves such that each color class consists of pairwise

(I
=
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Conjecture (Coloring conjecture)

Let F be a family of curves in the plane such that no k members
pairwise intersect. Then x(F) < c.

Color the curves such that each color class consists of pairwise
disjoint curves.
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Conjecture (Coloring conjecture)

Let F be a family of curves in the plane such that no k members
pairwise intersect. Then x(F) < c.

One of the color classes has at least |E(G)|/ck curves (edges).
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Conjecture (Coloring conjecture)

Let F be a family of curves in the plane such that no k members
pairwise intersect. Then x(F) < c.

<3n—06
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Conjecture (Coloring conjecture, FALSE)

Let F be a family of curves in the plane such that no k members
pairwise intersect. Then x(F) < c.

Conjecture is False!

Theorem (Pawlik, Kozik, Krawczyk, Lason, Micek, Trotter,

Walczak, 2012)

For infinite values n, there exists a family F of n segments in the
plane, no three members pairwise cross, and x(F) > Q(log log n).

Andrew Suk Extremal problems in topological graph theory



Conjecture (Coloring conjecture, FALSE)

Let F be a family of curves in the plane such that no k members
pairwise intersect. Then x(F) < c.

Conjecture true under extra conditions?
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Theorem (Suk and Walczak, 2013)

Let F be a family of curves in the plane such that no k members
pairwise intersect. Furthermore, suppose

@ F is simple,

Q there is a curve (3 that intersects every member in F exactly
once,

then x(F) < ck.
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Theorem (Suk and Walczak, 2013)

Let F be a family of curves in the plane such that no k members
pairwise intersect. Furthermore, suppose

@ F is simple,

Q there is a curve (B that intersects every member in F exactly
once,

then x(F) < ck.
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Theorem (Suk and Walczak, 2013)

Let F be a family of curves in the plane such that no k members
pairwise intersect. Furthermore, suppose

O F is simple,

Q there is a curve (3 that intersects every member in F exactly
once,

then x(F) < ck.

© Coloring intersection graphs of arcwise connected sets in the
plane, Lason, Micek, Pawlik and Walczak 2013.

© Coloring intersection graphs of x-monotone curves in the
plane, Suk 2012.

© On bounding the chromatic number of L-graphs, McGuinness
1996.
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Application of coloring result.

Corollary (Suk and Walczak, 2013)

For fixed k > 1, let G be a simple n-vertex k-quasi planar graph.

If G contains an edge that crosses every other edge, then
|E(G)] < O(n).
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Lemma (Fox, Pach, Suk, 2012)

Let G be a simple topological graph on n vertices. Then there are
subgraphs Gy, Gy, ..., Gy, C G such that

m
clogn Z::

every edge in G; is disjoint to every edge in G;. G; has an edge
that crosses every other edge in G;.
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Let n; = ’V(G,)‘
® |E(Gj)| < cknj, Suk and Walczak 2013.

m m
< Z |E(G))| < Z ckni = ck(m+n+--+nm) = cxn.
i—1 i—1

g
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Topological graph with no k pairwise crossing edges.
|E(G)| < n(log n)*~12, Pach, Radoicic, Téth.
|E(G)| < n(log n)©(I°g k) Fox, Pach.

Theorem (Suk and Walczak 2013)

Every n-vertex k-quasi-planar graph with no two edges having
more than t points in common, has at most ¢, n(log n)*¢ edges.

Theorem (Suk and Walczak 2013)

Every n-vertex simple k-quasi-planar graph has at most O(nlog n)
edges.

v

Goal: |[E(G)| < O(n).
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Topological graphs with no k-pairwise disjoint edges?
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Dual problem

Topological graphs with no k-pairwise disjoint edges?

We will only consider simple topological graphs (see why later).

-

T
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Conjecture (Conway)

Every n-vertex simple topological graph with no two disjoint edges,
has at most n edges.

Theorem (Lovész, Pach, Szegedy, 1997)

Every n-vertex simple topological graph with no two disjoint edges,
has at most 2n edges.

Best known 1.43n by Fulek and Pach, 2010.

2
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Generalization.

Theorem (Pach and Téth, 2005)

Every n-vertex simple topological graph with no k pairwise disjoint
edges, has at most Cnlog®* 10 n edges.

Conjecture to be at most O(n) (for fixed k). By solving for k in

Cynlog® 10 p = (5)-

Corollary (Pach and Téth, 2005)

Every complete n-vertex simple topological graph has at least
Q(log n/ log log n) pairwise disjoint edges.
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Conjecture (Pach and Téth)

There exists a constant §, such that every complete n-vertex
simple topological graph has at least Q(n°®) pairwise disjoint edges.
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Pairwise disjoint edges in complete n-vertex simple topological
graphs:

@ Q(log'/® n), Pach, Solymosi, Téth, 2001.

Q Q(log n/loglog n), Pach and Téth, 2005.

O Q(log!*¢ n), Fox and Sudakov, 2008.

Note € ~ 1/50. All results are slightly stronger statements.
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Pach and Téth conjecture: True.

Theorem (Suk, 2012)

Every complete n-vertex simple topological graph has at least
Q(n'/3) pairwise disjoint edges.
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Clearly the simple condition is required.
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Clearly the simple condition is required for this problem.
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Clearly the simple condition is required for this problem.

Every pair of edges cross once or twice (no more or less).
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Theorem (Suk, 2012)

Every complete n-vertex simple topological graph has at least
Q(n'/3) pairwise disjoint edges.
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combinatorial tools

Let F be a set system with ground set X.

Definition (Dual shatter function)

The dual shatter function 7%(m), is defined to be the maximum
number of equivalence classes on X, defined by an m-element
subfamily of F.

For m sets 51,55, ...,5m, x ~ y if BOTH x, y are in exactly the
same sets among Sy, ..., Sp, (i.e. no set S; contains x and not y or
vise versa).

l.e. m%(m) is the number of nonempty cells in the Venn diagram
of m sets of F.
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Example: X is a set of n points in the plane, F is the set of all
halfplanes.
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Example: X is a set of n points in the plane, F is the set of all
halfplanes.
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A set S € F stabs the pair (of vertices) x,y if |[SN{x,y} =1.
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A set S € F stabs the pair (of vertices) x,y if |[SN{x,y}| =1.

T D
'S Y. /.,
\\0 X,

® \\ - /// )
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Theorem (Matching theorem, Chazelle and Welzl, 1989)

Let F be a set system on an n element point set X (n is even),
such that (m) < O(m?). Then there exists a perfect matching
M on X such that each set in F stabs at most O(n'~1/9)
members in M.
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Theorem (Chazelle and Welzl, 1989)

Let F be a set system on an n-point set X (n is even), such that
m(m) < O(m9). Then there exists a perfect matching M on X
such that each set in F stabs at most O(n*~'/9) members in M.

/

\
~

M = {(x1, 1), (%2, ¥2); -+, (Xn/2: Ynp2) }-
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Theorem (Chazelle and Welzl, 1989)

Let F be a set system on an n-point set X (n is even), such that
m(m) < O(m9). Then there exists a perfect matching M on X
such that each set in F stabs at most O(n*~'/9) members in M.

Y/

M = {(x1, 1), (%2, ¥2); -+, (Xn/2: Ynp2) }-
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Main tool

Theorem (Matching Lemma, Chazelle and Welzl 1989)

Let F be a set system on an n-point set X (n is even), such that
m(m) < O(m9). Then there exists a perfect matching M on X
such that each set in F stabs at most O(n*~'/9) members in M.

M = {(x1,y1), (x2, ¥2); -+ (Xn/25 ¥Yn/2) }-
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Sketch of proof

Theorem (Suk, 2012)

Every complete n-vertex simple topological graph has at least
Q(n'/3) pairwise disjoint edges.

Kn+1
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Sketch of proof

Theorem (Suk, 2012)

Every complete n-vertex simple topological graph has at least
Q(n'/3) pairwise disjoint edges.

Kn+1
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Define F1 = |J {Sij}, where S;; is the set of vertices inside
1<i<j<n
triangle vo, vj, v;.

S39 ={v1,vs, 7}
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Define F1 = |J {Si;}, where S;; is the set of vertices inside
1<i<j<n
triangle vo, vj, v;.

S309={v1,v5,v7}, So11 = {v1,v5,v0}
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Define F1 = |J {Si;}, where S;; is the set of vertices inside
1<i<j<n
triangle vo, vj, v;.

M1

S309 ={vi,v5, v}, S211 = {v1,vs, o}, S5.11 = {wo}.
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F1 is not "complicated” .

7 (m) < O(m?).

Proof: Basically m "triangles” divides the plane into at most
O(m?) regions. Proof is by induction on m.
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Define set system 75 = |J {S];}, where v € 5] ; if
1<i<j<n i
topological edges vyvx and v;v; cross.

-
3,7 =?
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) _ , ;.
Define set system 7 = |J {5];}, where v € 5/ ; if
1<i<j<n

topological edges vovi and v;v; cross.

Vo
‘\ ‘
Vs
\'5

Séj = {V2) Ve, V5}-
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Define set system 75 = |J {S];}, where v € 5] ; if
1<i<j<n i
topological edges vovi and v;v; cross.

Vo

Sé,? = {V2’ V6, V5}v S§,9 =7.
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) _ , ;.
Define set system 7 = |J {5];}, where v € 5/ ; if
1<i<j<n

topological edges vovik and v;v; cross.

Vo

5

S37={v2,v6, 5}, S5 9 = {v1, 3, v, v12}.
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Again, F, is not "complicated”. Set F = F; U F,. One can show
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w5 (m) = O(m?).

By the matching lemma (Chazelle and Welzl), there is a perfect
matching M such that each set in F = F; U J, stabs at most
O(n?/3) members in M. Recall [M| = n/2.
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w5 (m) = O(m?).

By the matching lemma (Chazelle and Welzl), there is a perfect
matching M such that each set in F = F; U J, stabs at most
O(n?/3) members in M. Recall [M| = n/2.

Vo
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w5 (m) = O(m?).

By the matching lemma (Chazelle and Welzl), there is a perfect
matching M such that each set in F = F; U J, stabs at most
O(n?/3) members in M. Recall [M| = n/2.

Vo

D
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Auxiliary graph G, where V(G) = M and vjv; — viv; if S;j or S;J
stabs v v;.
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Auxiliary graph G, where V(G) = M and vjv; — viv; if S;j or S;J
stabs vy v;.
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Auxiliary graph G, where V(G) = M and v;v; — vcv; if S;j or S;;
stabs vy v;.

<
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Auxiliary graph G, where V(G) = M and v;v; — vcv; if S;j or S;;
stabs vy v;.

Sij and S; ; stabs (in total) at most O(n*/3) members in
M = V(G). |E(G)| < O(n°/3).
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|E(G)| < O(n®3), by Turdn, G contains an independent set of
size Q(n'/3).

) )
@® =
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|E(G)| < O(n®3), by Turan, G contains an independent set of
size Q(n'/3).

Vo

PREEN

N
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|E(G)| < O(n®3), by Turan, G contains an independent set of
size Q(n'/3).

Vo

Y M

PREEN

<) S

Vi

Claim!

Andrew Suk Extremal problems in topological graph theory



Since §; j does NOT stab vxv

Y% o
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\Y

Assume edges cross.
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\Yi

S,’(, stabs v;v;, which is a contradiction.
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Vi

Two edges must be disjoint.
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Same argument shows
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Q(n'/3) pairwise disjoint edges in Kny1.

Vo

Y M

PREEN

<0 Sl
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Open Problems.

© Best known upper bound construction: O(n) pairwise disjoint
edges.

@ Find Q(n%) pairwise disjoint edges in dense simple topological
graphs.
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Conjecture (Coloring conjecture, FALSE)

Let F be a family of curves in the plane such that no k members
pairwise intersect. Then x(F) < c.

False.

Let F be a family of curves in the plane such that no k members
L Then F s LEL poirwise disioi b
pairwise intersect. en F contains . pairwise isjoint members.

Open!
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Problem: Let F be a family of lines in R3, such that no 3
members pairwise intersect. Then is x(F) < ¢?
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Thank youl!
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