Semi-algebraic Ramsey numbers and its applications

Andrew Suk, UIC

December 4, 2014

Introduction

For k-uniform hypergraphs.

Definition

We define the Ramsey number $R_{k}(n)$ to be the minimum integer N such that any N-vertex k-uniform hypergraph H contains either a clique or an independent set of size n.

Theorem (Ramsey 1930)

For all k, n, the Ramsey number $R_{k}(n)$ is finite.
Estimate $R_{k}(n), k$ fixed and $n \rightarrow \infty$.

Known estimates
Theorem (Erdős-Szekeres 1935, Erdős 1947)

$$
2^{n / 2} \leq R_{2}(n) \leq 2^{2 n}
$$

Known estimates
Theorem (Erdős-Szekeres 1935, Erdős 1947)

$$
2^{n / 2} \leq R_{2}(n) \leq 2^{2 n}
$$

Theorem (Erdős-Rado 1952)

$$
2^{c n^{2}} \leq R_{3}(n) \leq 2^{2^{c^{\prime} n}}
$$

Known estimates

Theorem (Erdős-Szekeres 1935, Erdős 1947)

$$
2^{n / 2} \leq R_{2}(n) \leq 2^{2 n}
$$

Theorem (Erdős-Rado 1952, Erdős-Hajnal 1960's)

$$
\begin{gathered}
2^{c n^{2}} \leq R_{3}(n) \leq 2^{2^{c^{\prime} n}} \\
t_{k-1}\left(c n^{2}\right) \leq R_{k}(n) \leq t_{k}\left(c^{\prime} n\right) .
\end{gathered}
$$

Tower function $t_{i}(x)$ is given by $t_{1}(x)=x$ and $t_{i+1}(x)=2^{t_{i}(x)}$.

Combinatorial Problem

$$
2^{c n^{2}} \leq R_{3}(n) \leq 2^{2^{c^{\prime}} n} .
$$

Conjecture (Erdős, \$500 problem)

$$
2^{2^{c n}} \leq R_{3}(n)
$$

Erdős-Hajnal Stepping Up Lemma: $x<R_{k}(n)$, then $2^{x} \lesssim R_{k+1}(n)$ for $k \geq 3$

Would imply $R_{4}(n)=2^{2^{2^{\Theta(n)}}}$, and $R_{k}(n)=t_{k}(\Theta(n))$.

Combinatorial Problem

$$
2^{c n^{2}} \leq R_{3}(n) \leq 2^{2^{c^{\prime}}} .
$$

Conjecture (???)

$$
R_{3}(n) \leq 2^{c n^{2}}
$$

Erdös-Rado: $R_{k}(n) \leq 2^{\left(R_{k-1}(n)\right)^{c}}$
$R_{3}(n) \leq 2^{\left(R_{2}(n)\right)^{2}}$.

Combinatorial Problem

$$
2^{c n^{2}} \leq R_{3}(n) \leq 2^{2^{c^{\prime}}} .
$$

Conjecture (???)

$$
R_{3}(n) \leq 2^{c n^{2}}
$$

Erdös-Rado: $R_{k}(n) \leq 2^{\left(R_{k-1}(n)\right)^{c}}$
$R_{3}(n) \leq 2^{\left(R_{2}(n)\right)^{2}}$.

Combinatorial Problem

$$
2^{c n^{2}} \leq R_{3}(n) \leq 2^{2^{c^{\prime}}} .
$$

Conjecture (???)

$$
R_{3}(n) \leq 2^{c n^{2}}
$$

Erdös-Rado: $R_{k}(n) \leq 2^{\left(R_{k-1}(n)\right)^{c}}$
$R_{3}(n) \leq 2^{\left(R_{2}(n)\right)^{2}}$.

Combinatorial Problem

$$
2^{c n^{2}} \leq R_{3}(n) \leq 2^{2^{c^{\prime} n}}
$$

Conjecture (???)

$$
R_{3}(n) \leq 2^{c n^{2}}
$$

Erdős-Rado: $R_{k}(n) \leq 2^{\left(R_{k-1}(n)\right)^{c}}$
Betters bounds on Ramsey problems in discrete geometry.

Higher order Erdős-Szekeres: Find Order-type homogeneous subsequence.

Given a point sequence $P=p_{1}, p_{2}, \ldots, p_{N} \subset \mathbb{R}^{d}$ in general position, $\chi:\binom{P}{d+1} \rightarrow\{+1,-1\}$ (positive or negative orientation).

$$
\chi\left(p_{1}, \ldots, p_{d+1}\right)=\operatorname{sgn} \operatorname{det}\left(\begin{array}{cccc}
1 & 1 & \cdots & 1 \\
\mid & \mid & \cdots & \mid \\
p_{i_{1}} & p_{i_{2}} & \vdots & p_{i_{d+1}} \\
\mid & \mid & \cdots & \mid
\end{array}\right) .
$$

χ is the order-type of P.

A point sequence $P=p_{1}, \ldots, p_{n} \subset \mathbb{R}^{d}$ is order-type homogeneous, if every $d+1$-tuple has the same orientation (i.e. all positive or all negative).

Fact

A point sequence that is order-type homogeneous forms the vertex set of a convex polytope combinatorially equivalent to the cyclic polytope in \mathbb{R}^{d}.

A point sequence $P=p_{1}, \ldots, p_{n} \subset \mathbb{R}^{d}$ is order-type homogeneous, if every $d+1$-tuple has the same orientation (i.e. all positive or all negative).

Theorem (McMullen 1962)

Among all d-dimensional convex polytopes with n vertices, the cyclic polytope maximizes the number of faces of each dimension

A point sequence $P=p_{1}, \ldots, p_{n} \subset \mathbb{R}^{d}$ is order-type homogeneous, if every $d+1$-tuple has the same orientation (i.e. all positive or all negative).

Problem (Corodovil-Duchet 2000, Matoušek-Eliáš 2012.)

Determine the minimum integer $O T_{d}(n)$, such that any sequence of $O T_{d}(n)$ points in \mathbb{R}^{d} in general position, contains an n-element subsequence that is order-type homogeneous.

$$
O T_{d}(n) \leq R_{d+1}(n)
$$

1-dimension: $P=p_{1}, \ldots, p_{N} \subset \mathbb{R}$, order-type homogeneous subset

$$
p_{i_{1}}<p_{i_{2}}<\cdots<p_{i_{n}}
$$

or

$$
p_{i_{1}}>p_{i_{2}}>\cdots>p_{i_{n}}
$$

Erdős-Szkeres (1935): $O T_{1}(n)=(n-1)^{2}+1$

2-dimensions: Order-type homogeneous subset: Every triple has a clockwise orientation, or every triple has a clockwise orientation.

2-dimensions: Order-type homogeneous subset: Every triple has a clockwise orientation, or every triple has a clockwise orientation.

2-dimensions: Order-type homogeneous subset: Every triple has a clockwise orientation, or every triple has a clockwise orientation.
$O T_{2}(n)$ is about points in convex position (Happy Ending Problem).

Erdős-Szkeres cups-caps Theorem (1935): $O T_{2}(n)=2^{\Theta(n)}$
$O T_{1}(n)=\Theta\left(n^{2}\right), O T_{2}(n)=2^{\Theta(n)}$.
(Based on transitivity)

For $d \geq 3$
$V=\left\{N\right.$ labeled points in \mathbb{R}^{d} in general position $\}$
$E=\{(d+1)$-tuples having a positive orientation $\}$

- $O T_{d}(n) \leq R_{d+1}(n) \leq t_{d+1}(O(n))$

$$
\operatorname{det}\left(\begin{array}{cccc}
1 & 1 & \cdots & 1 \\
\mid & \mid & \cdots & \mid \\
p_{i_{1}} & p_{i_{2}} & \vdots & p_{i_{d+1}} \\
\mid & \mid & \cdots & \mid
\end{array}\right)>0
$$

- Conlon, Fox, Pach, Sudakov, S. 2012: $O T_{d}(n) \leq t_{d}\left(n^{c_{d}}\right)$, where c_{d} is exponential in a power of d.

Theorem (S. 2013)

For $d \geq 2$, we have

$$
O T_{d}(n) \leq t_{d}(O(n))
$$

Lower bound: $\mathrm{OT}_{3}(n) \geq 2^{2^{\Omega(n)}}$ (Elias-Matousek 2012). $O T_{d}(n) \geq t_{d}(\Omega(n)), d \geq 4$ (Barany-Matousek-Por 2014)

- $O T_{1}(n)=\Theta\left(n^{2}\right)$ (Erdős-Szekeres 1935)
- $O T_{2}(n)=2^{\Theta(n)}$ (Erdős-Szekeres 1935/1960)
- $O T_{3}(n)=2^{2^{\Theta(n)}}$ (Elias-Matousek 2012, S. 2013)
- $O T_{d}(n)=\operatorname{twr}_{d}(\Theta(n))$ (Barany-Matousek-Por 2014, S. 2013)

Tight bounds in all dimensions!

- $O T_{1}(n)=\Theta\left(n^{2}\right)$ (Erdős-Szekeres 1935)
- $O T_{2}(n)=2^{\Theta(n)}$ (Erdős-Szekeres 1935/1960)
- $O T_{3}(n)=2^{2^{\Theta(n)}}$ (Elias-Matousek 2012, S. 2013)
- $O T_{d}(n)=\operatorname{twr}_{d}(\Theta(n))$ (Barany-Matousek-Por 2014, S. 2013)
$V=$ points in \mathbb{R}^{d}

$$
\operatorname{det}\left(\begin{array}{cccc}
1 & 1 & \cdots & 1 \\
\mid & \mid & \cdots & \mid \\
p_{i_{1}} & p_{i_{2}} & \vdots & p_{i_{d+1}} \\
\mid & \mid & \cdots & \mid
\end{array}\right)>0 .
$$

- $O T_{1}(n)=\Theta\left(n^{2}\right)$ (Erdős-Szekeres 1935)
- $O T_{2}(n)=2^{\Theta(n)}$ (Erdős-Szekeres 1935/1960)
- $O T_{3}(n)=2^{2^{\Theta(n)}}$ (Elias-Matousek 2012, S. 2013)
- $O T_{d}(n)=\operatorname{twr}_{d}(\Theta(n))$ (Barany-Matousek-Por 2014, S. 2013)

Generalization: Semi-algebraic hypergraphs.

We say that $H=(V, E)$ is a semi-algebraic k-uniform hypergraph in d-space if
$V=\left\{n\right.$ points in $\left.\mathbb{R}^{d}\right\}$
E defined by polynomials f_{1}, \ldots, f_{t} and a Boolean formula Φ such that

$$
\begin{gathered}
\left(p_{i_{1}}, \ldots, p_{i_{k}}\right) \in E \\
\Leftrightarrow \Phi\left(f_{1}\left(p_{i_{1}}, \ldots, p_{i_{k}}\right) \geq 0, \ldots, f_{t}\left(p_{i_{1}}, \ldots, p_{i_{k}}\right) \geq 0\right)=\text { yes }
\end{gathered}
$$

Think of t as a constant.

Definition

We define the Ramsey number $R_{k}^{\text {semi }}(n)$ to be the minimum integer N such that any N-vertex k-uniform semi-algebraic hypergraph H (in \mathbb{R}^{d}) contains either a clique or an independent set of size n.

Results

$$
R_{k}^{\text {semi }}(n) \leq R_{k}(n)
$$

Theorem (Alon, Pach, Pinchasi, Radoičić, Sharir 2005)

$$
R_{2}^{\text {semi }}(n) \leq n^{c_{1}}
$$

$R_{k}^{\text {semi }}(n) \leq 2^{R_{k-1}^{\text {semi }}(n)}$.

Theorem (Conlon, Fox, Pach, Sudakov, S. 2012)

for $k \geq 3$,

$$
t_{k-1}\left(c_{2} n\right) \leq R_{k}^{\text {semi }}(n) \leq t_{k-1}\left(n^{c_{1}}\right)
$$

Recall: for $k \geq 3, t_{k-1}\left(c n^{2}\right) \leq R_{k}(n) \leq t_{k}\left(c^{\prime} n\right)$.

Theorem (Conlon, Fox, Pach, Sudakov, S. 2012)

for $k \geq 3$,

$$
R_{k}^{\text {semi }}(n) \leq t_{k-1}\left(n^{c_{1}}\right)
$$

Several applications...

Problem (Matoušek-Welzl 1992, Dujmović-Langerman 2011, Matoušek-Eliáš 2012.)
Determine the minimum integer $\mathrm{OSH}_{d}(n)$, such that any family of at least $\mathrm{OSH}_{d}(n)$ hyperplanes in \mathbb{R}^{d} in general position, must contain n members such that every d-tuple intersects on one-side of the hyperplane $x_{d}=0$.

$$
\mathrm{OSH}_{2}(n)=\Theta\left(n^{2}\right), \quad \operatorname{OSH}_{d}(n) \leq R_{d}(n) \leq t_{d}\left(c^{\prime} n\right)
$$

$V=\{\mathrm{N}$ hyperplanes $\}$,
$E=\left\{d\right.$-tuples that intersect above $x_{d}=0$ hyperplane $\}$.
New bound: $\operatorname{OSH}_{d}(n) \leq R_{d}^{\text {semi }}(n) \leq t_{d-1}\left(n^{c_{1}}\right)$

Combinatorial Problem

Ramsey number of 3-uniform hypergraphs.

$$
2^{c n^{2}} \leq R_{3}(n) \leq 2^{2^{c^{\prime} n}}
$$

Conjecture (Erdős)

$$
2^{2^{c n}} \leq R_{3}(n)
$$

Is there a geometric construction showing $2^{2^{c n}} \leq R_{3}(n)$?
Our Result: $R_{3}^{\text {semi }}(n) \leq 2^{n^{c_{1}}}$.

Geometric Ramsey Problems.
$O T_{d}(n)=\operatorname{twr}_{d}(\Theta(n))$
$R_{k}^{\text {semi }}(n)=\operatorname{twr}_{k-1}\left(n^{\Theta(1)}\right)$.

Classical Ramsey Numbers, $k \geq 3$

$$
\begin{gathered}
R_{2}(n)=2^{\Theta(n)} \\
\operatorname{twr}_{k-1}\left(c n^{2}\right) \leq R_{k}(n) \leq \operatorname{twr}_{k}\left(c^{\prime} n\right)
\end{gathered}
$$

Off diagonal Ramsey numbers

$R_{k}(s, n)$, clique of size s, independent set of size n. s fixed, $n \rightarrow \infty$.

Graphs:
$R_{2}(3, n)=\Theta\left(n^{2} \log n\right)$ (Ajtai-Komlós-Szemerédi 1980, Kim 1995) $R_{2}(s, n)=n^{\Theta(1)}$

Theorem (Spencer 1978, Ajtai, Komlós, Szemerédi 1980)

For fixed s

$$
n^{s / 2} \leq R_{2}(s, n) \leq n^{s}
$$

Off diagonal Ramsey numbers

Graphs: $R_{2}(s, n) \leq O\left(n^{s}\right)$
Recursive formula: $R_{3}(s, n) \leq 2^{\left(R_{2}(s, n)\right)^{2}}$

Theorem (Erdős-Hajnal-Rado 1952, 1965)

Fixeds

$$
2^{n} \leq R_{3}(s, n) \leq 2^{n^{2 s}}
$$

$$
\operatorname{twr}_{k-1}(n) \leq R_{k}(s, n) \leq \operatorname{twr}_{k-1}\left(n^{2 s}\right)
$$

Off diagonal Ramsey numbers

Graphs: $R_{2}(s, n) \leq O\left(n^{s}\right)$
Recursive formula: $R_{3}(s, n) \leq 2^{\left(R_{2}(s, n)\right)^{1}}$

Theorem (Conlon-Fox-Sudakov 2011)

Fixeds

$$
2^{n \log n} \leq R_{3}(s, n) \leq 2^{n^{5}}
$$

$$
\operatorname{twr}_{k-1}(n \log n) \leq R_{k}(s, n) \leq \operatorname{twr}_{k-1}\left(n^{s}\right)
$$

Off diagonal Ramsey numbers for Semi-algebraic hypergraphs

Graphs: (Walczak 2014, Conlon-Fox-Pach-Sudakov-S. 2013)

$$
n \log \log n \leq R_{2}^{\text {semi }}(s, n) \leq n^{C}
$$

$C=2^{d}$
3-uniform hypergraphs: (Conlon-Fox-Pach-Sudakov-S. 2013)

$$
\begin{aligned}
n^{c} & \leq R_{3}^{\text {semi }}(s, n) \leq 2^{n^{c^{\prime}}} \\
\operatorname{twr}_{k-2}\left(n^{c}\right) & \leq R_{k}^{\text {semi }}(s, n) \leq \operatorname{twr}_{k-1}\left(n^{c^{\prime}}\right)
\end{aligned}
$$

$$
n^{c} \leq R_{3}^{\text {semi }}(s, n) \leq 2^{n^{n^{\prime}}} .
$$

Conjecture (Conlon-Fox-Pach-Sudakov-S. 2014)

For fixed s,

$$
R_{3}^{\text {semi }}(s, n) \leq n^{C}
$$

$R_{3}^{\text {semi }} \leq 2^{R_{2}^{\text {semi }}(s, n)}$

$$
n^{c} \leq R_{3}^{\text {semi }}(s, n) \leq 2^{n^{c^{\prime}}} .
$$

Conjecture (Conlon-Fox-Pach-Sudakov-S. 2014)

For fixed s,

$$
R_{3}^{\text {semi }}(s, n) \leq n^{C}
$$

$R_{3}^{\text {semi }} \leq 2^{R_{2}^{\text {semi }}(s, n)}$

$$
n^{c} \leq R_{3}^{\text {semi }}(s, n) \leq 2^{n^{c^{\prime}}} .
$$

Conjecture (Conlon-Fox-Pach-Sudakov-S. 2014)

For fixed s,

$$
R_{3}^{\text {semi }}(s, n) \leq n^{C}
$$

$R_{3}^{\text {semi }} \leq 2^{R_{2}^{\text {semi }}(s, n)}$

$$
\Omega\left(n^{c}\right) \leq R_{3}^{\text {semi }}(s, n) \leq 2^{n^{c}} .
$$

Conjecture (Conlon-Fox-Pach-Sudakov-S. 2014)

For fixed s,

$$
R_{3}^{\text {semi }}(s, n) \leq n^{C}
$$

Difficulties

- $R_{3}^{\text {semi }} \leq 2^{R_{2}^{\text {semi }}(s, n)}$.

Using different methods (Not Erdős-Rado)

Theorem (S. 2014+)

For fixed k, s

$$
R_{3}^{\text {semi }}(s, n) \leq 2^{n^{o(1)}}
$$

$R_{k}^{s e m i}(s, n) \leq 2^{R_{k-1}^{s e m i}(s, n)}$

Corollary

For fixed k, s

$$
R_{k}^{\text {semi }}(s, n) \leq \operatorname{twr}_{k}\left(n^{o(1)}\right) .
$$

Application

Problem

Off diagonal One-Sided Hyperplane problem: $\mathrm{OSH}_{d}(s, n)$

$$
\mathrm{OSH}_{2}(s, n)=\mathrm{O}(s n)
$$

$\mathrm{OSH}_{d}(s, n) \leq 2$ OSH $_{d-1}(s, n)$
Conlon-Fox-Pach-Sudakov-S.: $\mathrm{OSH}_{3}(s, n) \leq 2^{\mathrm{O}(s n)}$
S., $2014+\mathrm{OSH}_{3}(s, n) \leq 2^{n^{o(1)}}$.

$R_{3}^{\text {semi }}(s, n) \leq 2^{n^{o(1)}}$

Theorem (S. 2014+)

Let $H=(V, E)$ be a semi-algebraic 3-hypergraph on N vertices. If H is $K_{4}^{(3)}$-free, then H has an independent set S of size

$$
|S| \geq 2^{\frac{(\log \log N)^{2}}{c \log \log \log N}}
$$

Sketch Proof: 3-uniform hypergraph $H=(V, E)$, $V=\left\{p_{1}, \ldots, p_{N}\right\}$ points in \mathbb{R}^{d}.
Relation $E \subset\binom{V}{3}$ depends on f and Φ

$$
\phi\left(f\left(x_{1}, x_{2}, x_{3}\right) \geq 0\right)=\{\text { yes, no }\}
$$

3-uniform hypergraph $H=(V, E), V=\left\{p_{1}, \ldots, p_{n}\right\}$ points in \mathbb{R}^{d}. Relation $E \subset\binom{V}{3}$ depends on f and Φ

$$
\phi\left(f\left(x_{1}, x_{2}, x_{3}\right) \geq 0\right)=\{\text { yes, no }\}
$$

$\left(p_{1}, p_{2}, p_{3}\right) \in E$ depends on $f\left(p_{1}, p_{2}, p_{3}\right) \rightarrow\{+,-, 0\}$.

3-uniform hypergraph $H=(V, E), V=\left\{p_{1}, \ldots, p_{n}\right\}$ points in \mathbb{R}^{d}. Relation $E \subset\binom{V}{3}$ depends on f and Φ

$$
\phi\left(f\left(x_{1}, x_{2}, x_{3}\right) \geq 0\right)=\{\text { yes, no }\}
$$

$\left(p_{1}, p_{2}, p_{3}\right) \in E$ depends on $f\left(p_{1}, p_{2}, p_{3}\right) \rightarrow\{+,-, 0\}$.

Example

3-uniform hypergraph $H=(V, E), V=\left\{p_{1}, \ldots, p_{n}\right\}$ points in \mathbb{R}^{d}. Relation $E \subset\binom{V}{3}$ depends on f and Φ

$$
\phi\left(f\left(x_{1}, x_{2}, x_{3}\right) \geq 0\right)=\{\text { yes, no }\}
$$

Zero set $f\left(p_{1}, p_{2}, x_{3}\right)=0$, surface in \mathbb{R}^{d}.

Example

3-uniform hypergraph $H=(V, E), V=\left\{p_{1}, \ldots, p_{n}\right\}$ points in \mathbb{R}^{d}.
Relation $E \subset\binom{V}{3}$ depends on f and Φ

$$
\phi\left(f\left(x_{1}, x_{2}, x_{3}\right) \geq 0\right)=\{\text { yes,no }\}
$$

Zero set $f\left(p_{1}, p_{2}, x_{3}\right)=0$, surface in \mathbb{R}^{d}.

$\binom{N}{2}$ surfaces in \mathbb{R}^{d} and N points.

Using cell decomposition. $\epsilon=\epsilon(d)$

Using cell decomposition. $\epsilon=\epsilon(d), \delta=\delta(d)$

$$
\gamma=\gamma(d)
$$

By a probabilistic argument. Red represents edges.

$$
N^{\gamma}
$$

By a probabilistic argument. Blue represents NON-edges.

$$
N^{\gamma}
$$

Apply induction on the N^{γ} vertices

$(2,1)$ situation

$(2,1)$ situation

$(2,1)$ situation

Graph G_{1}

Graph G_{2}

Collection of graphs.

Graphs $G_{1}, G_{2}, \ldots, G_{\sqrt{\log N}}$ are each semi-algebraic.

Semi-algebraic graphs $G_{1}, G_{2}, \ldots, G_{\sqrt{\log N}}$ on vertex set V^{\prime}, $\left|V^{\prime}\right|=N^{\gamma}$,
Case 1: $\exists G_{i}$ with clique of size $2^{(\log N)^{1 / 4}}>2^{(\log \log N)^{2} / \log \log \log N}$.

Semi-algebraic graphs $G_{1}, G_{2}, \ldots, G_{\sqrt{\text { ogN }}}$ on vertex set V^{\prime}, $\left|V^{\prime}\right|=N^{\gamma}$,
Case 1: $\exists G_{i}$ with clique of size $2^{(\log N)^{1 / 4}}>2^{(\log \log N)^{2} / \log \log \log N}$.

Semi-algebraic graphs $G_{1}, G_{2}, \ldots, G_{\sqrt{\operatorname{logN}}}$ on vertex set V^{\prime}, $\left|V^{\prime}\right|=N^{\gamma}$,
Case 1: $\exists G_{i}$ with clique of size $2^{(\log N)^{1 / 4}}>2^{(\log \log N)^{2} / \log \log \log N}$.

Recall H is $K_{4}^{(3)}$-free! Assume $\omega\left(G_{i}\right) \leq 2^{(\log N)^{1 / 4}}$.

Lemma

Semi-algebraic graphs $G_{1}, \ldots, G_{\sqrt{\log N}}$ with $\omega\left(G_{i}\right) \leq 2^{(\log N)^{1 / 4}}$ on $V^{\prime},\left|V^{\prime}\right|=N^{\gamma}$. Then $\exists S \subset V^{\prime}$ such that $|S|=2^{(\log N) / \log \log N}$ such that $G_{i}[S]$ is empty for all i

$$
\begin{aligned}
& \frac{\log N}{\log \log N} \\
& \sqrt{\log (N)}
\end{aligned}
$$

Lemma

Semi-algebraic graphs $G_{1}, \ldots, G_{\sqrt{\log N}}$ with $\omega\left(G_{i}\right) \leq 2^{(\log N)^{1 / 4}}$ on $V^{\prime},\left|V^{\prime}\right|=N^{\gamma}$. Then $\exists S \subset V^{\prime}$ such that $|S|=2^{(\log N) / \log \log N}$ such that $G_{i}[S]$ is empty for all i

$$
\frac{\log N}{\log \log N}
$$

Lemma

Semi-algebraic graphs $G_{1}, \ldots, G_{\sqrt{\log N}}$ with $\omega\left(G_{i}\right) \leq 2^{(\log N)^{1 / 4}}$ on $V^{\prime},\left|V^{\prime}\right|=N^{\gamma}$. Then $\exists S \subset V^{\prime}$ such that $|S|=2^{(\log N) / \log \log N}$ such that $G_{i}[S]$ is empty for all i

Lemma

Semi-algebraic graphs $G_{1}, \ldots, G_{\sqrt{\log N}}$ with $\omega\left(G_{i}\right) \leq 2^{(\log N)^{1 / 4}}$ on $V^{\prime},\left|V^{\prime}\right|=N^{\gamma}$. Then $\exists S \subset V^{\prime}$ such that $|S|=2^{(\log N) / \log \log N}$ such that $G_{i}[S]$ is empty for all i

$$
\begin{aligned}
& \frac{\log N}{\log \log N} \\
& \ddots \cdot \\
& \sqrt{\log (N)}
\end{aligned}
$$

Lemma

Semi-algebraic graphs $G_{1}, \ldots, G_{\sqrt{\log N}}$ with $\omega\left(G_{i}\right) \leq 2^{(\log N)^{1 / 4}}$ on $V^{\prime},\left|V^{\prime}\right|=N^{\gamma}$. Then $\exists S \subset V^{\prime}$ such that $|S|=2^{(\log N) / \log \log N}$ such that $G_{i}[S]$ is empty for all i

$$
\frac{2^{\frac{\log N}{\log \log N}}}{\sqrt{\log (N)}}
$$

Lemma

Semi-algebraic graphs $G_{1}, \ldots, G_{\sqrt{\log N}}$ with $\omega\left(G_{i}\right) \leq 2^{(\log N)^{1 / 4}}$ on $V^{\prime},\left|V^{\prime}\right|=N^{\gamma}$. Then $\exists S \subset V^{\prime}$ such that $|S|=2^{(\log N) / \log \log N}$ such that $G_{i}[S]$ is empty for all i

$$
\begin{aligned}
& \frac{\log N}{\log \log N} \\
& \ddots \quad \cdots \quad \cdots \cdots
\end{aligned}
$$

Lemma

Semi-algebraic graphs $G_{1}, \ldots, G_{\sqrt{\log N}}$ with $\omega\left(G_{i}\right) \leq 2^{(\log N)^{1 / 4}}$ on $V^{\prime},\left|V^{\prime}\right|=N^{\gamma}$. Then $\exists S \subset V^{\prime}$ such that $|S|=2^{(\log N) / \log \log N}$ such that $G_{i}[S]$ is empty for all i

Apply induction in each small part.

Independent set of size $f(N)=2^{(\log \log N)^{2} / \log \log \log N}$

$$
f(N)=f\left(2^{\log N / \log \log N}\right) \sqrt{\log N}
$$

Hence

$$
N^{c} \leq R_{3}^{\text {semi }}(4, n) \leq 2^{n^{o(1)}}
$$

Thank you!

