Extremal results for Semi-algebraic hypergraphs

Andrew Suk (UIC)

November 4, 2015

Bipartite graph G, edge set E. $n \to \infty$

Bipartite graph G, edge set E. $n \to \infty$

Number of edges $|E| \le n^2$.

Assumption: No $K_{2,2}$ as a subgraph.

Theorem (Kövári, Sós, and Turán)

If G is $K_{2,2}$ -free, then $|E(G)| \leq O(n^{3/2})$.

Theorem (Kövári, Sós, and Turán)

If G is $K_{t,t}$ -free, $t \ge 2$, then $|E(G)| \le cn^{2-1/t} + tn$.

Either $|E| \ge n^2/2$ or $|\overline{E}| \ge n^2/2$.

Theorem (Kövári, Sós, and Turán)

If G is $K_{t,t}$ -free, $t \ge 2$, then $|E(G)| \le cn^{2-1/t} + tn$.

Theorem (Kövári, Sós, and Turán)

Theorem (Kövári, Sós, and Turán)

Theorem (Kövári, Sós, and Turán)

Theorem (Kövári, Sós, and Turán)

Theorem (Kövári, Sós, and Turán)

If $G=(V_1,V_2,E)$ is a bipartite graph with $|V_1|,|V_2|=n$, then there are subsets $U_1\subset V_1,U_2\subset V_2$ such that $|U_1|=|U_2|=c'\log n$, and either $U_1\times U_2\subset E$ or $U_1\times U_2\cap E=\emptyset$.

Result is tight by a random construction.

k-partite k-uniform hypergraph H=(V,E), |V|=kn. k is fixed and $n \to \infty$

k-partite k-uniform hypergraph $H=(V,E),\ |V|=kn\ k$ is fixed and $n\to\infty$

k-partite k-uniform hypergraph H = (V, E), |V| = kn

k-partite k-uniform hypergraph H = (V, E), |V| = kn

These results are tight.

Generalization, Erdős

k-partite k-uniform hypergraph H, edge set E.

In this talk: We can improve these results if our graph or hypergraph is defined algebraically with low complexity. **Semi-algebraic** hypergraphs.

Generalization, Erdős

k-partite k-uniform hypergraph H, edge set E.

Semi-algebraic hypergraphs: $V = \{\text{simple geometric objects in } \mathbb{R}^d\}$, $E = \{\text{simple relation on } k \text{ tuples of } V\}$.

 $A_i \to p_i = (x_i, y_i, r_i), A_j \to p_j = (x_j, y_j, r_j).$ A_i and A_j cross if and only if

$$-x_i^2 + 2x_ix_j - x_i^2 - y_i^2 + 2y_iy_j - y_i^2 + r_i^2 + 2r_ir_j + r_i^2 \ge 0.$$

Graph G = (V, E), V = n points in \mathbb{R}^3 E defined by the polynomial

$$f(z_1,...,z_6) = -z_1^2 + 2z_1z_4 - z_4^2 - z_2^2 + 2z_2z_5 - z_5^2 + z_3^2 + 2z_3z_6 + z_6^2.$$

$$(p_i, p_j) \in E \Leftrightarrow f(p_i, p_j) \ge 0.$$

More examples of semi-algebraic hypergraphs

Examples

- $V = \{n \text{ circles in } \mathbb{R}^3\}$ $E = \{\text{pairs that are linked}\}.$
- ② $V = \{n \text{ hyperplanes in } \mathbb{R}^d \text{ in general position} \},$ $E = \{d \text{-tuples whose intersection point is above the hyperplane } x_d = 0\}.$

More examples of semi-algebraic hypergraphs

Examples

- $V = \{n \text{ circles in } \mathbb{R}^3\} \to n \text{ points in higher dimensions.}$ $E = \{\text{pairs that are linked}\} \to \text{polynomials } f_1, ..., f_t.$
- ② $V = \{n \text{ hyperplanes in } \mathbb{R}^d \text{ in general position}\} \rightarrow n \text{ points in higher dimensions},$

 $E = \{d\text{-tuples} \text{ whose intersection point is above the hyperplane } x_d = 0\} \rightarrow \text{polynomials } f_1, ..., f_t.$

We say that H = (V, E) is a semi-algebraic k-uniform hypergraph in d-space if

 $V = \{n \text{ points in } \mathbb{R}^d\}$

E defined by polynomials $f_1,...,f_t$ and a Boolean formula Φ such that

$$(p_{i_1},...,p_{i_k})\in E$$

$$\Leftrightarrow \Phi(f_1(p_{i_1},...,p_{i_k}) \geq 0,...,f_t(p_{i_1},...,p_{i_k}) \geq 0) = \text{yes}$$

We say that H = (V, E) is a **semi-algebraic** k-uniform **hypergraph** in d-space if

 $V = \{n \text{ points in } \mathbb{R}^d\}$

E defined by polynomials $f_1, ..., f_t$ and a Boolean formula Φ such that

$$(p_{i_1},...,p_{i_k}) \in E$$

$$\Leftrightarrow \Phi(f_1(p_{i_1},...,p_{i_k}) \geq 0,...,f_t(p_{i_1},...,p_{i_k}) \geq 0) = \mathsf{yes}$$

 $n \to \infty$

E has bounded complexity: k = uniformity, d = dimension, t, and $deg(f_i)$ is bounded by some constant. (say ≤ 1000).

Previous results

Theorem (Alon, Pach, Pinchasi, Radoicic, Sharir 2005)

Let $H=(V_1,V_2,E)$ be a bipartite semi-algebraic graph (k=2) in d-space, where $|V_1|=|V_2|=n$. Then there are subsets $V_1',V_2'\subset V$ such that $|V_i'|\geq \epsilon n$ and either $(V_1',V_2')\subset E$ or $(V_1',V_2')\subset \overline{E}$, and $\epsilon=\epsilon(E)$.

Previous results

Theorem (Alon, Pach, Pinchasi, Radoicic, Sharir 2005)

Let $H=(V_1,V_2,E)$ be a bipartite semi-algebraic graph (k=2) in d-space, where $|V_1|=|V_2|=n$. Then there are subsets $V_1',V_2'\subset V$ such that $|V_i'|\geq \epsilon n$ and either $(V_1',V_2')\subset E$ or $(V_1',V_2')\subset \overline{E}$, and $\epsilon=\epsilon(E)$.

Previous results

Theorem (Alon, Pach, Pinchasi, Radoicic, Sharir 2005)

Let $H=(V_1,V_2,E)$ be a bipartite semi-algebraic graph (k=2) in d-space, where $|V_1|=|V_2|=n$. Then there are subsets $V_1',V_2'\subset V$ such that $|V_i'|\geq \epsilon n$ and either $(V_1',V_2')\subset E$ or $(V_1',V_2')\subset \overline{E}$, and $\epsilon=\epsilon(E)$.

Stronger density theorem

Including an argument of Komlos:

Theorem (Alon, Pach, Pinchasi, Radoicic, Sharir 2005)

Let $H=(V_1,V_2,E)$ be a bipartite semi-algebraic graph (k=2) in d-space, where $|V_1|=|V_2|=n$. If $|E|\geq \epsilon n^2$, then there are subsets $V_1',V_2'\subset V$ such that $|V_i'|\geq \epsilon^C n$ where C=C(E), and $(V_1',V_2')\subset E$.

A stronger density theorem

Including an argument of Komlos:

Theorem (Alon, Pach, Pinchasi, Radoicic, Sharir 2005)

Let $H=(V_1,V_2,E)$ be a bipartite semi-algebraic graph (k=2) in d-space, where $|V_1|=|V_2|=n$. If $|E|\geq \epsilon n^2$, then there are subsets $V_1',V_2'\subset V$ such that $|V_i'|\geq \epsilon^C n$ where C=C(E), and $(V_1',V_2')\subset E$.

Generalization

Theorem (Fox, Gromov, Lafforgue, Naor, Pach 2012, Bukh and Hubard 2012)

Let $H = (V_1, ..., V_k, E)$ be a k-partite semi-algebraic k-uniform hypergraph in d-space, where $|V_1| = \cdots = |V_k| = n$. If $|E| \ge \epsilon n^k$, then there are subsets $V_1', ..., V_k' \subset V$ such that $|V_i'| \ge \epsilon^C n$ where C = C(E), and $(V_1', ..., V_k') \subset E$.

Generalization

Theorem (Fox, Gromov, Lafforgue, Naor, Pach 2012, Bukh and Hubard 2012)

Let $H = (V_1, ..., V_k, E)$ be a k-partite semi-algebraic k-uniform hypergraph in d-space, where $|V_1| = \cdots = |V_k| = n$. If $|E| \ge \epsilon n^k$, then there are subsets $V_1', ..., V_k' \subset V$ such that $|V_i'| \ge \epsilon^C n$ where C = C(E), and $(V_1', ..., V_k') \subset E$.

Generalization

 $C(E) = C(k, d, f_1, \dots, f_t)$: Dependency on uniformity k and dimension d is very bad.

Fox, Gromov, Lafforgue, Naor, Pach: $C \sim 2^{2^{-\frac{1}{2}^{2}}}$ (tower-type)

Bukh-Hubard: $C(k,d,t,f_1,\ldots,f_t)\sim 2^{2^{k+d}}$, double exponential in k+d.

Bukh-Hubard: Set sizes decay triple exponentially in k

Theorem (Fox, Pach, S., 2015)

Let $H=(V_1,...,V_k,E)$ be a k-partite semi-algebraic k-uniform hypergraph in d-space, where $|V_1|=\cdots=|V_k|=n$. If $|E|\geq \epsilon n^k$, then there are subsets $V_1',...,V_k'\subset V$ such that $|V_i'|\geq \frac{\epsilon^{d^c}}{2^{ckd^c}}n$, and $(V_1',....,V_k')\subset E$. Here c depends on f_1,\ldots,f_t .

Theorem (Fox, Pach, S., 2015)

Let $H=(V_1,...,V_k,E)$ be a k-partite semi-algebraic k-uniform hypergraph in d-space, where $|V_1|=\cdots=|V_k|=n$. If $|E|\geq \epsilon n^k$, then there are subsets $V_1',...,V_k'\subset V$ such that $|V_i'|\geq \frac{\epsilon^{d^c}}{2^{ckd^c}}n$, and $(V_1',...,V_k')\subset E$. Here c depends on f_1,\ldots,f_t .

Theorem (Pach, 1998)

Let $P_1, P_2, ..., P_{d+1} \subset \mathbb{R}^d$ be disjoint n-element point sets with $P_1 \cup \cdots \cup P_{d+1}$ in general position. Then there is a point $q \in \mathbb{R}^d$ and subsets $P_1' \subset P_1, ..., P_{d+1}' \subset P_{d+1}$, with

$$|P_i'| \ge 2^{-2^{2^{O(d)}}} n,$$

Theorem (Pach, 1998)

Let $P_1, P_2, ..., P_{d+1} \subset \mathbb{R}^d$ be disjoint n-element point sets with $P_1 \cup \cdots \cup P_{d+1}$ in general position. Then there is a point $q \in \mathbb{R}^d$ and subsets $P_1' \subset P_1, ..., P_{d+1}' \subset P_{d+1}$, with

$$|P_i'| \ge 2^{-2^{2^{O(d)}}} n,$$

Theorem (Pach, 1998)

Let $P_1, P_2, ..., P_{d+1} \subset \mathbb{R}^d$ be disjoint n-element point sets with $P_1 \cup \cdots \cup P_{d+1}$ in general position. Then there is a point $q \in \mathbb{R}^d$ and subsets $P'_1 \subset P_1, ..., P'_{d+1} \subset P_{d+1}$, with

$$|P_i'| \ge 2^{-2^{2^{O(d)}}} n,$$

Theorem (Pach, 1998)

Let $P_1, P_2, ..., P_{d+1} \subset \mathbb{R}^d$ be disjoint n-element point sets with $P_1 \cup \cdots \cup P_{d+1}$ in general position. Then there is a point $q \in \mathbb{R}^d$ and subsets $P_1' \subset P_1, ..., P_{d+1}' \subset P_{d+1}$, with

$$|P_i'| \ge 2^{-2^{2^{O(d)}}} n,$$

Theorem (Pach, 1998)

Let $P_1, P_2, ..., P_{d+1} \subset \mathbb{R}^d$ be disjoint n-element point sets with $P_1 \cup \cdots \cup P_{d+1}$ in general position. Then there is a point $q \in \mathbb{R}^d$ and subsets $P_1' \subset P_1, ..., P_{d+1}' \subset P_{d+1}$, with

$$|P_i'| \ge 2^{-2^{2^{O(d)}}} n,$$

Theorem (Pach, 1998)

Let $P_1, P_2, ..., P_{d+1} \subset \mathbb{R}^d$ be disjoint n-element point sets with $P_1 \cup \cdots \cup P_{d+1}$ in general position. Then there is a point $q \in \mathbb{R}^d$ and subsets $P_1' \subset P_1, ..., P_{d+1}' \subset P_{d+1}$, with

$$|P_i'| \ge 2^{-2^{2^{O(d)}}} n,$$

Theorem (Pach, 1998)

$$|P_i'| \ge 2^{-2^{2^{O(d)}}} n_i$$

Theorem (Fox, Pach, S., 2015)

Let $P_1, P_2, ..., P_{d+1} \subset \mathbb{R}^d$ be disjoint n-element point sets with $P_1 \cup \cdots \cup P_{d+1}$ in general position. Then there is a point $q \in \mathbb{R}^d$ and subsets $P'_1 \subset P_1, ..., P'_{d+1} \subset P_{d+1}$, with

$$|P_i'| \ge 2^{-O(d^3 \log d)} n,$$

Theorem (Fox, Pach, S., 2015)

Let $P_1, P_2, ..., P_{d+1} \subset \mathbb{R}^d$ be disjoint n-element point sets with $P_1 \cup \cdots \cup P_{d+1}$ in general position. Then there is a point $q \in \mathbb{R}^d$ and subsets $P_1' \subset P_1, ..., P_{d+1}' \subset P_{d+1}$, with

$$|P_i'| \ge 2^{-O(d^3 \log d)} n,$$

such that all closed rainbow simplices contains q.

Theorem (Karasev, Kynčl, Paták, Patáková, Tancer, 2015)

$$|P_i'| \le 2^{-cd \log d} n,$$

Theorem (Bárány and Valtr, 1998)

Let $P_1,...,P_k$ be n-element point sets in \mathbb{R}^d such that $P_1 \cup \cdots \cup P_k$ is in general position. Then there are subsets $P_1' \subset P_1,...,P_k' \subset P_k$ such that the k-tuple $(P_1',...,P_k')$ has same-type transversals and

$$|P_i'| \ge 2^{-k^{O(d)}} n$$

Theorem (Bárány and Valtr, 1998)

Let $P_1,...,P_k$ be n-element point sets in \mathbb{R}^d such that $P_1 \cup \cdots \cup P_k$ is in general position. Then there are subsets $P_1' \subset P_1,...,P_k' \subset P_k$ such that the k-tuple $(P_1',...,P_k')$ has same-type transversals and

$$|P_i'| \ge 2^{-k^{O(d)}} n_i$$

Theorem (Bárány and Valtr, 1998)

Let $P_1,...,P_k$ be n-element point sets in \mathbb{R}^d such that $P_1 \cup \cdots \cup P_k$ is in general position. Then there are subsets $P_1' \subset P_1,...,P_k' \subset P_k$ such that the k-tuple $(P_1',...,P_k')$ has same-type transversals and

$$|P_i'| \ge 2^{-k^{O(d)}} n$$

$$2^{-k^{O(d)}}$$
 \bigcirc

Theorem (Bárány and Valtr, 1998)

Let $P_1,...,P_k$ be n-element point sets in \mathbb{R}^d such that $P_1 \cup \cdots \cup P_k$ is in general position. Then there are subsets $P_1' \subset P_1,...,P_k' \subset P_k$ such that the k-tuple $(P_1',...,P_k')$ has same-type transversals and

$$|P_i'| \ge 2^{-k^{O(d)}} n,$$

Theorem (Bárány and Valtr, 1998)

$$|P_i'| \ge 2^{-k^{O(d)}} n,$$

Theorem (Fox, Pach, S., 2015)

Let $P_1,...,P_k$ be n-element point sets in \mathbb{R}^d such that $P_1 \cup \cdots \cup P_k$ is in general position. Then there are subsets $P_1' \subset P_1,...,P_k' \subset P_k$ such that the k-tuple $(P_1',...,P_k')$ has same-type transversals and

$$|P_i'| \ge 2^{-O(d^3k\log k)}n,$$

Theorem (Fox, Pach, S., 2015)

For any $\epsilon > 0$, we can partition V into at most $M(\epsilon)$ parts, such that almost all k-tuples of parts are **complete or empty**. Moreover $M(\epsilon) < (1/\epsilon)^c$, where c depends only on k, d, E.

$$H =$$

Theorem (Fox, Pach, S., 2015)

For any $\epsilon > 0$, we can partition V into at most $M(\epsilon)$ parts, such that almost all k-tuples of parts are **complete or empty**. Moreover $M(\epsilon) < (1/\epsilon)^c$, where c depends only on k, d, E.

Theorem (Fox, Pach, S., 2015)

For any $\epsilon > 0$, we can partition V into at most $M(\epsilon)$ parts, such that almost all k-tuples of parts are **complete or empty**. Moreover $M(\epsilon) < (1/\epsilon)^c$, where c depends only on k, d, E.

Theorem (Fox, Pach, S., 2015)

For any $\epsilon > 0$, we can partition V into at most $M(\epsilon)$ parts, such that almost all k-tuples of parts are **complete or empty**. Moreover $M(\epsilon) < (1/\epsilon)^c$, where c depends only on k, d, E.

Theorem (Fox, Pach, S., 2015)

For any $\epsilon > 0$, we can partition V into at most $M(\epsilon)$ parts, such that almost all k-tuples of parts are **complete or empty**. Moreover $M(\epsilon) < (1/\epsilon)^c$, where c depends only on k, d, E.

Regularity lemma: Semi-algebraic k-uniform hypergraph in \mathbb{R}^d .

Theorem (Fox, Pach, S., 2015)

For any $\epsilon > 0$, we can partition V into at most $M(\epsilon)$ parts, such that almost all k-tuples of parts are **complete or empty**. Moreover $M(\epsilon) < (1/\epsilon)^c$, where c depends only on k, d, E.

- k = 2, $M(\epsilon) \le tower(1/\epsilon) = 2^{2^{2\cdots 2}}$
- k = 3, $M(\epsilon) \le wowzer(1/\epsilon) = tower(tower(...(tower(2))))$
- k = 4, $M(\epsilon) \leq wowzer(wowzer(...(wowzer(2))))$.

A classic theorem of Kövári, Sós, and Turán

Theorem (Kövári, Sós, and Turán)

If G is $K_{t,t}$ -free, $t \ge 2$, then $|E(G)| \le cn^{2-1/t} + tn$.

A classic theorem of Kövári, Sós, and Turán

Theorem (Kövári, Sós, and Turán)

If G is $K_{t,t}$ -free, $t \ge 2$, then $|E(G)| \le cn^{2-1/t} + tn$.

Conjecture

The above bound is tight.

(Brown 1966) $K_{2,2}$ -free graph with $|E(G)| \ge cn^{3/2}$

(Brown 1966) $K_{3,3}$ -free with $|E(G)| \ge cn^{5/3}$

Open for $t \ge 4$

Random construction: $K_{t,t}$ -free with $|E(G)| \ge c_t n^{2-2/t}$.

A classic theorem of Kövári, Sós, and Turán

Theorem (Kövári, Sós, and Turán)

If G is
$$K_{t,t}$$
-free, $t \ge 2$, then $|E(G)| \le cn^{2-1/t} + tn$.

Problem: Can we improve the Kövári-Sós-Turán bound for semi-algebraic graphs?

Incidences between points and lines

Problem (Erdős)

Determine the maximum number of incidences between n points and n lines in the plane.

Incidence: (p, ℓ) such that $p \in \ell$. $I(P, L) = \{(p, \ell) \in P \times L : p \in \ell\}$.

Incidences between points and lines

Theorem (Szemerédi-<u>Trotter)</u>

Let P be a set of n points in the plane and L a set of n lines in the plane. Then $|I(P,L)| \leq O(n^{4/3})$.

Incidences between points and lines

Theorem (Szemeredi-Trotter)

Let P be a set of n points in the plane and L a set of n lines in the plane. Then $|I(P,L)| \leq O(n^{4/3})$.

 $L \to L^* = n$ points in \mathbb{R}^2 . $K_{2,2}$ -free

Unit distance problem

Problem

Determine the maximum number of unit distance pairs among n points in the plane.

- • • •
- • • •
- • • •
- • • •

Unit distance problem

Theorem (Erdős, Spencer-Szemerédi-Trotter)

Let $u_2(n)$ denote the maximum number unit distances that can be spanned by n points in the plane.

$$n^{1+c/\log\log n} \le u_2(n) \le c' n^{4/3}$$

- • • •
-
- • • •
-

Unit distance problem

Theorem (Erdős, Spencer-Szemerédi-Trotter)

Let $u_2(n)$ denote the maximum number unit distances that can be spanned by n points in the plane.

$$n^{1+c/\log\log n} \le u_2(n) \le c' n^{4/3}$$

Semi-algebraic graph in the plane, $K_{2,3}$ -free

Theorem (Fox, Pach, Sheffer, S., Zahl)

Let d and t be fixed, and let $G = (V_1, V_2, E)$ be a bipartite semi-algebraic graph in \mathbb{R}^d . If G is $K_{t,t}$ -free, then

$$|E(G)| \le O(n^{4/3}) \qquad d = 2$$

$$|E(G)| \le O(n^{\frac{2d}{d+1} + o(1)})$$
 $d \ge 3$.

Theorem (Kövári, Sós, and Turán)

If G is $K_{t,t}$ -free, $t \ge 2$, then $|E(G)| \le cn^{2-1/t} + tn$.

Theorem (Fox, Pach, Sheffer, S., Zahl)

Let d and t be fixed, and let $G = (V_1, V_2, E)$ be a bipartite semi-algebraic graph in \mathbb{R}^d . If G is $K_{t,t}$ -free, then

$$|E(G)| \le O(n^{4/3}) \qquad d = 2$$

$$|E(G)| \le O(n^{\frac{2d}{d+1} + o(1)})$$
 $d \ge 3.$

Corollary

 $P = \{n \text{ points in the plane}\}$

 $L = \{n \text{ strips in the plane with unit width}\}$

No t points in P lie inside t strips of L, then

$$|I(P,L)| \leq O(n^{4/3}).$$

Unit distance problem in higher dimensions

Theorem (Erdős-Pach)

Let $u_d(n)$ denote the maximum number of times the unit distance can occur among n points in \mathbb{R}^d . For $d \geq 4$,

$$u_d(n) = \Theta(n^2).$$

Orthogonal circles: $(x_1, x_2, x_3, x_4) \in \mathbb{R}^4$

$$P_1 = \{(x_1, x_2, 0, 0), n \text{ points on the circle } x_1^2 + x_2^2 = 1/2\}$$

 $P_2 = \{(0, 0, x_3, x_4), n \text{ points on the circle } x_3^2 + x_4^2 = 1/2\}$

Forbid $K_{t,t}$: (Oberlin-Oberlin) $O(n^{7/4})$, plus some strong conditions.

Theorem (Fox, Pach, Sheffer, S., Zahl)

Let d and t be fixed, and let $G = (V_1, V_2, E)$ be a bipartite semi-algebraic graph in \mathbb{R}^d . If G is $K_{t,t}$ -free, then

$$|E(G)| \le O(n^{4/3}) \qquad d = 2$$

$$|E(G)| \le O(n^{\frac{2d}{d+1} + o(1)})$$
 $d \ge 3$.

Corollary

For fixed t > 0, let P be a set of n points in \mathbb{R}^4 such that there are no two "orthogonal circles" with t points on each circle. Then the maximum number of unit distances spanned by P is at most $O(n^{8/5+o(1)})$.

Oberlin-Oberlin: $O(n^{7/4})$, under much stronger conditions.

Theorem (Szemeredi-Trotter)

Let P be a set of n points in the plane and L a set of n lines in the plane. Then $|I(P,L)| \leq O(n^{4/3})$.

Problem

Let P be a set of n points and L be a set of n lines in the plane. If $|I(P,L)| \ge \Omega(n^{4/3})$ incidences, then does $P \cup L$ contain F_1 ?

Conjecture

 $P \cup L$ is F_1 -free, then $|I(P,L)| \leq O(n^{4/3-\epsilon})$.

(Solymosi 2005) $n^{4/3}/\log^* n$

Theorem (Erdős)

Every n-vertex graph with no C_6 has at most $O(n^{4/3})$ edges.

Conjecture

Let G be an n-vertex semi-algebraic bipartite graph in \mathbb{R}^d with no C_6 . Then $|E| \leq o(n^{4/3})$.

Theorem (Erdős)

Every n-vertex graph with no C_{2k} has at most $O(n^{1+1/k})$ edges.

Conjecture

Let G be an n-vertex semi-algebraic graph in \mathbb{R}^d with no C_{2k} . Then $|E| \leq o(n^{1+1/k})$. Thank you!

Extremal results for Semi-algebraic hypergraphs

Andrew Suk (UIC)