Ramsey numbers: combinatorial and algebraic

Andrew Suk (UC San Diego)

November 12, 2017

Origins of Ramsey theory

"A combinatorial problem in geometry," by Paul Erdős and George Szekeres (1935)

Erdős-Szkeres 1935

Theorem (Monotone subsequence)

Any sequence of $(n-1)^2 + 1$ integers contains a monotone subsequence of length n.

Theorem (Convex polygon)

For any n > 0, there is a minimal ES(n), such that every set of ES(n) points in the plane in general position contains n members in convex position.

Theorem (Ramsey numbers)

New proof of Ramsey's theorem.

Convex polygon theorem

Theorem (Erdős-Szekeres 1935, 1960)

$$2^{n-2} + 1 \le ES(n) \le {2n-4 \choose n-2} + 1 = O(4^n/\sqrt{n}).$$

Conjecture: $ES(n) = 2^{n-2} + 1$, $n \ge 3$.

Second Proof

Theorem (Erdős-Szekeres 1935, 1960)

$$2^{n-2} + 1 \le ES(n) \le {2n-4 \choose n-2} + 1 = O(4^n/\sqrt{n}).$$

Theorem (S. 2016)

$$ES(n) = 2^{n+o(n)}$$

Erdős-Szkeres 1935

Theorem (Monotone subsequence)

Any sequence of $(n-1)^2 + 1$ integers contains a monotone subsequence of length n.

Theorem (Convex polygon)

For any n > 0, there is a minimal ES(n), such that every set of ES(n) points in the plane in general position contains n members in convex position.

Theorem (Ramsey numbers)

New proof of Ramsey's theorem.

- s integers for which every k-tuple is red, or
- ② n integers for which every k-tuple is blue.

- ① s integers for which every k-tuple is red, or
- $oldsymbol{0}{2}$ n integers for which every k-tuple is blue.

- $oldsymbol{0}{2}$ n integers for which every k-tuple is blue.

- s integers for which every k-tuple is red, or
- ② n integers for which every k-tuple is blue.

- \bigcirc s integers for which every k-tuple is red, or
- ② *n* integers for which every k-tuple is blue.

- s integers for which every k-tuple is red, or
- ② n integers for which every k-tuple is blue.

Formal definition: For any integers $k \ge 1$, $s, n \ge k$, there is a minimum $r_k(s,n) = N$, such that for every red/blue coloring of the k-tuples of $\{1,2,\ldots,N\}$,

- 1 s integers for which every k-tuple is red, or
- \bigcirc *n* integers for which every k-tuple is blue.

 $r_k(s, n) =$ Ramsey numbers

Graph Ramsey theorem

Theorem (Erdős-Szkeres 1935)

$$r_2(s,n) \le \binom{n+s-2}{s-1}$$
 $r_2(n,n) \le \binom{2n-2}{n-1} \approx \frac{4^n}{\sqrt{n}}$

Diagonal graph Ramsey numbers

Theorem (Erdős 1947, Erdős-Szekeres 1935)

$$(1+o(1))\frac{n}{e}2^{n/2} < r_2(n,n) < \frac{4^n}{\sqrt{n}}.$$

Theorem (Spencer 1977, Conlon 2008)

$$(1+o(1))\frac{\sqrt{2}}{e}n2^{n/2} < r_2(n,n) < \frac{4^n}{n^{c\log n/\log\log n}}$$

diagonal hypergraph Ramsey numbers

$$\operatorname{twr}_1(x) = x \text{ and } \operatorname{twr}_{i+1}(x) = 2^{\operatorname{twr}_i(x)}.$$

Theorem (Erdős-Hajnal-Rado 1952/1965)

$$2^{cn^2} < r_3(n,n) < 2^{2^{c'n}}$$

For k > 3

$$\operatorname{twr}_{k-1}(cn^2) < r_k(n,n) < \operatorname{twr}_k(c'n)$$

Conjecture (Erdős, \$500)

$$r_3(n,n) > 2^{2^{cn}}$$

Conjecture: $r_3(n,n) > 2^{2^{cn}}$

Theorem (Erdős-Hajnal-Rado 1952/1965)

$$2^{cn^2} < r_3(n,n) < 2^{2^{c'n}}$$

Theorem (Erdős-Hajnal)

$$r_3(n, n, n, n) > 2^{2^{cn}}$$

Theorem (Conlon-Fox-Sudakov 2011)

Every 3-uniform hypergraph of size $2^{cn^{2+o(1)}}$ contains n vertices with either fewer than $o\binom{n}{3}$ edges or more than $(1-o(1))\binom{n}{3}$ edges.

Off-diagonal Ramsey numbers

 $r_k(s,n)$ where s is fixed, and $n \to \infty$. $r_k(s,n) \ll r_k(n,n)$ Graphs:

Theorem (Ajtai-Komlós-Szemerédi 1980, Kim 1995)

$$r_2(3, n) = \Theta\left(\frac{n^2}{\log n}\right)$$

Theorem

For fixed s > 3

$$n^{(s+1)/2+o(1)} < r_2(s,n) < n^{s-1+o(1)}$$

$$2^{n/2} < r_2(n,n) < 4^n$$

Off-diagonal hypergraph Ramsey numbers

3-uniform hypergraphs:

Theorem (Erdős-Hajnal-Rado)

For fixed $s \geq 4$,

$$2^{csn} < r_3(s,n) < 2^{c'n^{2s-4}}$$

Theorem (Conlon-Fox-Sudakov 2010)

For fixed $s \ge 4$,

$$2^{csn\log n} < r_3(s,n) < 2^{c'n^{s-2}\log n}.$$

$$2^{cn^2} < r_3(n,n) < 2^{2^{c'n}}$$

Off-diagonal hypergraph Ramsey numbers

4-uniform hypergraphs: Exponential tower gap.

Theorem (Erdős-Rado, Conlon-Fox-Sudakov)

For fixed $s \geq 5$,

$$r_4(s,n)<2^{2^{n^c}}.$$

Conjecture (Erdős-Hajnal 1972)

For all $s \ge 5$, $r_4(s, n) > 2^{2^{cn}}$.

Conjecture (Erdős-Hajnal 1972)

For all $s \ge k + 1$, $r_k(s, n) > twr_{k-1}(cn)$.

Tower growth rate for $r_4(5, n)$ is unknown.

Theorem (Erdos-Hajnal)

$$r_4(7,n) > 2^{2^{cn}}$$
.

Corollary (Mubayi-S., Conlon-Fox-Sudakov 2017)

$$r_k(k+3, n) > \text{twr}_{k-1}(cn).$$

Erdős-Hajnal (1972): $r_4(5, n), r_4(6, n) > 2^{cn}$

Towards the Erdős-Hajnal conjecture

Conjecture (Erdos-Hajnal)

$$r_4(5, n), r_4(6, n) > 2^{2^{cn}}$$

Erdős-Hajnal (1972):
$$r_4(5, n), r_4(6, n) > 2^{cn}$$

Mubayi-S. (2017):
$$r_4(5, n) > 2^{n^2}$$
 $r_4(6, n) > 2^{n^{c \log n}}$

New lower bounds for off-diagonal hypergraph Ramsey numbers

Theorem (Mubayi-S., 2017+)

$$r_4(5,n) > 2^{n^{c \log n}}$$
 $r_4(6,n) > 2^{2^{cn^{1/5}}}$

for fixed k > 4

$$r_k(k+1,n) > \operatorname{twr}_{k-2}(n^{c\log n})$$
 $r_k(k+2,n) > \operatorname{twr}_{k-1}(cn^{1/5}).$

Diagonal Ramsey problem (\$500 Erdős):

$$2^{cn^2} < r_3(n,n) < 2^{2^{cn}}$$
.

Off-diagonal Ramsey problem:

$$2^{n^{c \log n}} < r_4(5, n) < 2^{2^{cn}}.$$

Theorem (Mubayi-S. 2017)

Showing $r_3(n, n) > 2^{2^{cn}}$ implies that $r_4(5, n) > 2^{2^{c'n}}$.

Theorem (Erdős-Szekeres, 1935)

Theorem (Erdős-Szekeres, 1935)

Theorem (Erdős-Szekeres, 1935)

Theorem (Erdős-Szekeres, 1935)

Theorem (Erdős-Szekeres, 1935)

Theorem (Erdős-Szekeres, 1935)

Theorem (Erdős-Szekeres, 1935)

Theorem (Erdős-Szekeres, 1935)

Applications of Ramsey numbers in geometry

 $OT_d(n) = \text{minimum } N \text{ such that every set of } N \text{ points in } \mathbb{R}^d \text{ in general position contains } n \text{ members that form the vertices of a cyclic polytope.}$

Theorem

$$OT_d(n) \leq r_{d+1}(n,n)$$

Many more applications of Ramsey numbers.

Theorem (Colon-Fox-Sudakov, 2008)

$$ES(n) \leq r_4(5, n) < 2^{2^{cn^2 \log n}}$$

 $V = \{N \text{ points in the plane in general position}\}$

 $E = \{4\text{-tuples in convex position}\}$

Better bounds for hypergraphs defined geometrically?

Definition of semi-algebraic hypergraphs

We say that H = (V, E) is a semi-algebraic k-uniform hypergraph in d-space if

 $V = \{n \text{ points in } \mathbb{R}^d\}$

E defined by polynomials $f_1,...,f_t$ and a Boolean formula Φ such that

$$(p_{i_1},...,p_{i_k})\in E$$

$$\Leftrightarrow \Phi(f_1(p_{i_1},...,p_{i_k}) \geq 0,...,f_t(p_{i_1},...,p_{i_k}) \geq 0) = \mathsf{yes}$$

Complexity of H is at most C if d, t and degree of the f_i -s is at most C (constant).

Definition

We define the *semi-algebraic Ramsey number* $r_k^{semi}(s,n)$ to be the minimum integer N such that any N-vertex k-uniform **semi-algebraic** hypergraph H (in \mathbb{R}^d) contains either a clique of size s or an independent set of size s.

Problem: Estimate $r_k^{semi}(s, n)$.

$$r_k^{\text{semi}}(s,n) \leq r_k(s,n) = N$$

Diagonal Semi-algebraic Ramsey numbers

Theorem (Alon, Pach, Pinchasi, Radoičić, Sharir 2005)

$$r_2^{semi}(n,n) \leq n^{c_1}$$
.

Theorem (Conlon, Fox, Pach, Sudakov, S. 2012)

$$2^{cn} < r_3^{semi}(n,n) < 2^{n^{c'}}$$

For k > 4

$$t_{k-1}(c_2n) \le r_k^{semi}(n,n) \le t_{k-1}(n^{c_1}).$$

Classical Ramsey numbers:

$$2^{n/2} \le r_2(n,n) \le 2^{2n}$$
 $2^{cn^2} \le r_3(n,n) \le 2^{2^{cn}}$.

$$t_{k-1}(n^2) \le r_k(n,n) \le t_k(cn).$$

$$r_k^{semi}(s,n) \ll r_k^{semi}(n,n)$$

Theorem (Alon, Pach, Pinchasi, Radoičić, Sharir 2005)

$$r_2^{semi}(n,n) \leq n^{c_1}$$
.

Conjecture

For fixed
$$s > 3$$
, $r_2^{semi}(s, n) = O(n)$

Theorem (Alon, Pach, Pinchasi, Radoičić, Sharir 2005)

$$r_2^{semi}(n,n) \leq n^{c_1}$$
.

Conjecture

For fixed
$$s > 3$$
, $r_2^{semi}(s, n) = O(n)$

Theorem (Alon, Pach, Pinchasi, Radoičić, Sharir 2005)

$$r_2^{semi}(n,n) \leq n^{c_1}$$
.

Theorem (Fox-Pach-Suk 2017+)

$$r_2^{semi}(10, n) \ge n^{4/3}$$

Theorem (Conlon-Fox-Pach-Sudakov-S. 2013)

$$n^{c'} \leq r_3^{semi}(s,n) \leq 2^{n^c}.$$

$$\operatorname{twr}_{k-2}(n^{c'}) \leq r_k^{\text{semi}}(s,n) \leq r_k^{\text{semi}}(n,n) \leq \operatorname{twr}_{k-1}(n^c).$$

Classical version: $r_3(s, n) \leq 2^{n^c}$

Conjecture (Conlon-Fox-Pach-Sudakov-S.)

$$r_3^{semi}(s,n) \leq n^c$$

Theorem (S. 2016)

$$r_3^{semi}(s,n)<2^{n^{o(1)}}.$$

$$o(1) = \frac{1}{\log \log n}.$$

Conjecture (Conlon-Fox-Pach-Sudakov-S.)

$$r_3^{semi}(s,n) \leq n^c$$

Andrew Suk (UC San Diego)

Theorem (Conlon-Fox-Pach-Sudakov-S. 2012)

For semi-algebraic graphs in \mathbb{R} , $r_3^{1-semi}(s,n) \leq 2^{\log^C n}$

Conjecture (Conlon-Fox-Pach-Sudakov-S.)

$$r_3^{semi}(s,n) \leq n^c$$

Theorem (Conlon-Fox-Pach-Sudakov-S. 2012)

For semi-algebraic graphs in \mathbb{R} , $r_3^{1-\text{semi}}(s,n) \leq 2^{\log^C n}$

Proof.
$$V = \{N = 2^{\log^C n} \text{ points in } \mathbb{R}\}, \text{ no RED } K_4^{(3)}.$$
 $E = \{(v_1, v_2, v_3) \in \binom{V}{3} : f(v_1, v_2, v_3) > 0\}.$

Theorem (Conlon-Fox-Pach-Sudakov-S. 2012)

For semi-algebraic graphs in \mathbb{R} , $r_3^{1-\text{semi}}(s,n) \leq 2^{\log^C n}$

Proof. $V = \{N = 2^{\log^C n} \text{ points in } \mathbb{R}\}, \text{ no RED } K_4^{(3)}.$ $E = \{(v_1, v_2, v_3) \in \binom{V}{3} : f(v_1, v_2, v_3) > 0\}.$

Theorem (Conlon-Fox-Pach-Sudakov-S. 2012)

For semi-algebraic graphs in \mathbb{R} , $r_3^{1-\text{semi}}(s,n) \leq 2^{\log^C n}$

Proof. $V = \{N = 2^{\log^C n} \text{ points in } \mathbb{R}\}, \text{ no RED } K_4^{(3)}.$ $E = \{(v_1, v_2, v_3) \in \binom{V}{3} : f(v_1, v_2, v_3) > 0\}.$

$$f(v_1, v_2 x)$$

Theorem (Conlon-Fox-Pach-Sudakov-S. 2012)

For semi-algebraic graphs in \mathbb{R} , $r_3^{1-\text{semi}}(s,n) \leq 2^{\log^C n}$

Proof. $V = \{N = 2^{\log^{C} n} \text{ points in } \mathbb{R}\}, \text{ no } \mathsf{RED} \ \mathcal{K}_{4}^{(3)}.$ $E = \{(v_1, v_2, v_3) \in \binom{V}{3} : f(v_1, v_2, v_3) > 0\}.$

Theorem (Conlon-Fox-Pach-Sudakov-S. 2012)

For semi-algebraic graphs in \mathbb{R} , $r_3^{1-semi}(s,n) \leq 2^{\log^C n}$

Proof. $V = \{N = 2^{\log^C n} \text{ points in } \mathbb{R}\}, \text{ no RED } K_4^{(3)}.$ $E = \{(v_1, v_2, v_3) \in \binom{V}{3} : f(v_1, v_2, v_3) > 0\}.$

Theorem (Conlon-Fox-Pach-Sudakov-S. 2012)

For semi-algebraic graphs in \mathbb{R} , $r_3^{1-\text{semi}}(s,n) \leq 2^{\log^C n}$

Proof. $V = \{N = 2^{\log^C n} \text{ points in } \mathbb{R}\}, \text{ no } \mathsf{RED} \ K_4^{(3)}.$ $E = \{(v_1, v_2, v_3) \in \binom{V}{3} : f(v_1, v_2, v_3) > 0\}.$

Key idea: Apply induction on the number of roots.

Base Case: Every pair gives rise to a polynomial with no roots within the interval

Base Case: Every pair gives rise to a polynomial with no roots within the interval

Base Case: Every pair gives rise to a polynomial with no roots within the interval

Inductive Step: Every pair gives rise to a polynomial with at most *t* roots.

Find a monochromatic subset of size N^{ϵ} .

Sturm's theorem

$$E = \{(v_1, v_2, v_3) \in \binom{V}{3} : f(v_1, v_2, v_3) > 0\}$$

Definition (Sturm sequence)

Set $g_0(z) = f(x, y, z)$. Then define $g_1(z) = g'_0(z)$, $g_2(z) = -rem(g_0, g_1)$,

$$g_i(z) = -rem(g_{i-2}, g_{i-1}),$$

where $rem(g_{i-2}, g_{i-1})$ is the remainder when computing the long-division $\frac{g_{i-2}}{g_{i-1}}$.

Theorem (Sturm)

Given a Sturm sequence g_0, g_1, \ldots, g_k , let $\sigma(a)$ denote the number of sign changes in the sequence $g_0(a), g_1(a), \ldots, g_k(a)$. Then the number of distinct roots of g(z) = f(x, y, z) inside the interval [a, b] is $\sigma(a) - \sigma(b)$.

 $\chi(v_1, v_2) = blue$ if fewer than t roots.

$$g_0(a), g_1(a), \ldots, g_k(a) = f(x, y, a), f_1(x, y, a), \ldots, f_k(x, y, a)$$

$$g_0(b), g_1(b), \ldots, g_k(b) = f(x, y, b), f_1(x, y, b), \ldots, f_k(x, y, b)$$

 $\chi(v_1, v_2) = blue$ if fewer than t roots.

$$g_0(a), g_1(a), \ldots, g_k(a) = f(x, y, a), f_1(x, y, a), \ldots, f_k(x, y, a)$$

$$g_0(b), g_1(b), \ldots, g_k(b) = f(x, y, b), f_1(x, y, b), \ldots, f_k(x, y, b)$$

 $\chi(v_1, v_2) = blue$ if fewer than t roots.

$$g_0(a), g_1(a), \ldots, g_k(a) = f(x, y, a), f_1(x, y, a), \ldots, f_k(x, y, a)$$

$$g_0(b), g_1(b), \ldots, g_k(b) = f(x, y, b), f_1(x, y, b), \ldots, f_k(x, y, b)$$

 $\chi(v_1, v_2) = blue$ if fewer than t roots.

$$g_0(a), g_1(a), \ldots, g_k(a) = f(x, y, a), f_1(x, y, a), \ldots, f_k(x, y, a)$$

$$g_0(b), g_1(b), \ldots, g_k(b) = f(x, y, b), f_1(x, y, b), \ldots, f_k(x, y, b)$$

 $\chi(v_1, v_2) = blue$ if fewer than t roots.

$$\chi(v_1, v_2) = red$$
 if t roots.

$$g_0(a), g_1(a), \ldots, g_k(a) = f(x, y, a), f_1(x, y, a), \ldots, f_k(x, y, a)$$

$$g_0(b), g_1(b), \ldots, g_k(b) = f(x, y, b), f_1(x, y, b), \ldots, f_k(x, y, b)$$

 $\chi(v_1, v_2) = blue$ if fewer than t roots.

$$\chi(v_1, v_2) = red$$
 if t roots.

$$g_0(a), g_1(a), \ldots, g_k(a) = f(x, y, a), f_1(x, y, a), \ldots, f_k(x, y, a)$$

$$g_0(b), g_1(b), \ldots, g_k(b) = f(x, y, b), f_1(x, y, b), \ldots, f_k(x, y, b)$$

Open combinatorial problems

Problem (Erdős \$500)

Close the gap for $r_3(n, n)$.

$$2^{cn^2} < r_3(n,n) < 2^{2^{cn}}$$

Problem (Erdős-Hajnal 1972)

Close the gap for $r_4(5, n)$.

$$2^{n^{c \log n}} < r_4(5, n) < 2^{2^{cn}}$$

Open geometric problems

Conjecture (Conlon-Fox-Pach-Sudakov-S. 2012, S. 2016)

Close the gap for $r_3^{semi}(4, n)$

$$n^C < r_3^{semi}(4, n) < 2^{n^{o(1)}}$$

Theorem (Erdős-Szekeres, Conlon-Fox-Pach-Sudakov-S)

$$2^{2n} < r_3^{semi}(n,n) < 2^{n^C}$$

Problem

$$2^{cn^2} < r_3^{semi}(n,n)$$

Thank you!