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Origins of Ramsey theory

“A combinatorial problem in geometry,” by Paul Erdds and George
Szekeres (1935)
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Erdos-Szkeres 1935

Theorem (Monotone subsequence)

Any sequence of (n — 1)? + 1 integers contains a monotone
subsequence of length n.

Theorem (Convex polygon)

For any n > 0, there is a minimal ES(n), such that every set of
ES(n) points in the plane in general position contains n members
in convex position.

Theorem (Ramsey numbers)

New proof of Ramsey'’s theorem.
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Convex polygon theorem

Theorem (Erdés-Szekeres 1935, 1960)

2n — 4

n—2 < <
2 +1_E5(n)_(n_2

) +1=0(4"/Vn).

Conjecture: ES(n) =2""2+1, n> 3.
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Second Proof

Theorem (Erdés-Szekeres 1935, 1960)

2n — 4

n—2 < <
2 +1_E5(n)_(n_2

) +1=0(4"/v/n).

Theorem (S. 2016)
ES(n) = 2"+l
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Ramsey theory

Formal definition: For any integers kK > 1, s,n > k, there is a
minimum ri(s,n) = N, such that for every red/blue coloring of the
k-tuples of {1,2,..., N},

& — —0 & 0 0 & o ¢

1 2 3 4 N

© s integers for which every k-tuple is red, or

©Q n integers for which every k-tuple is blue.
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Ramsey theory

Formal definition: For any integers kK > 1, s,n > k, there is a
minimum ri(s,n) = N, such that for every red/blue coloring of the
k-tuples of {1,2,..., N},

123 4 . N
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Ramsey theory

Formal definition: For any integers kK > 1, s,n > k, there is a
minimum ri(s,n) = N, such that for every red/blue coloring of the
k-tuples of {1,2,..., N},

1 2 3 4 N

© s integers for which every k-tuple is red, or

Q n integers for which every k-tuple is blue.

rk(s, n) = Ramsey numbers
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Graph Ramsey theorem

Theorem (Erdés-Szkeres 1935)
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Diagonal graph Ramsey numbers

Theorem (Erdés 1947, Erdés-Szekeres 1935)

(1+oﬂ»gfp<uﬂmn)<——.

Theorem (Spencer 1977, Conlon 2008)

4n
nclogn/loglogn

u+(»¢}wﬁ<dnm<
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diagonal hypergraph Ramsey numbers

twry (x) = x and twrjyq(x) = 28WLi(),

Theorem (Erdés-Hajnal-Rado 1952/1965)

2C/n

P r3(n,n) <2
For k >3

twri_1(cn?) < re(n, n) < twrg(c'n)

Conjecture (Erdés, $500)

r3(n, n) > 2%
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Conjecture: r3(n, n) > 22

Theorem (Erdés-Hajnal-Rado 1952/1965)

Cln
2" < r(n,n) < 22

Theorem (Erdés-Hajnal)

r3(n, n, n,n) > 227

Theorem (Conlon-Fox-Sudakov 2011)

Every 3-uniform hypergraph of size 2en* Y contains n vertices with
either fewer than o(3) edges or more than (1 — o(1))(3) edges.
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Off-diagonal Ramsey numbers

rk(s, n) where s is fixed, and n — co. r(s,n) < ri(n, n)

Graphs:

Theorem (Ajtai-Komlés-Szemerédi 1980, Kim 1995)

rn(3,n) =0© (Io’gn)

Theorem
For fixed s > 3

n(s+1)/2+o(1) < I’Q(S, n) < ns—1+o(1)

22 < ra(n,n) < 4"
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Off-diagonal hypergraph Ramsey numbers

3-uniform hypergraphs:

Theorem (Erdés-Hajnal-Rado)

For fixed s > 4,
! 22s—4

2¢" < n3(s,n) <2°°

Theorem (Conlon-Fox-Sudakov 2010)

For fixed s > 4,

/ 5—2
2csn|ogn < r3(s, n) < oc'n Iogn.

Cln
2 < r(n,n) < 22
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Off-diagonal hypergraph Ramsey numbers

4-uniform hypergraphs: Exponential tower gap.

Theorem (Erdés-Rado, Conlon-Fox-Sudakov)

For fixed s > 5,
ra(s,n) < 2% .

Conjecture (Erd8s-Hajnal 1972)

For all s > 5, r4(s, n) > 22

Conjecture (Erd8s-Hajnal 1972)
For all s > k + 1, rk(s, n) > twrg_1(cn).

Tower growth rate for r4(5, n) is unknown.
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Theorem (Erdos-Hajnal)

ra(7,n) > 227,

Corollary (Mubayi-S., Conlon-Fox-Sudakov 2017)

re(k + 3, n) > twrg_1(cn).

Erdés-Hajnal (1972): r4(5, n), ra(6, n) > 2<"

Andrew Suk (UC San Diego) Ramsey numbers: combinatorial and algebraic



Towards the Erdds-Hajnal conjecture

Conjecture (Erdos-Hajnal)

ra(5, n), r2(6, n) > 22

Erdés-Hajnal (1972): ra(5, n), ra(6, n) > 2<"

clogn

Mubayi-S. (2017): ra(5,n) > 2™  rs(6,n) > 2"
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New lower bounds for off-diagonal hypergraph Ramsey
numbers

Theorem (Mubayi-S., 2017+)

clogn Cl'll/5
ra(5,n) > 2" s ra(6,n) > 227 .
for fixed k > 4
n(k +1,n) > twry_p(nc'°8") re(k 42, n) > twry_1(cn*/®).

Andrew Suk (UC San Diego) Ramsey numbers: combinatorial and algebraic



Diagonal Ramsey problem ($500 Erdés):

27 < r3(n, n) < 227,

Off-diagonal Ramsey problem:

clogn

2" < (5, n) < 227,

Theorem (Mubayi-S. 2017)

Showing r3(n, n) > 227 implies that rq(5, n) > 22",
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Convex polygon theorem, first proof

Theorem (Erdés-Szekeres, 1935)

For every n > 3, ES(n) < r4(5,n). Set N = ra(5, n).
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Convex polygon theorem, first proof

Theorem (Erdés-Szekeres, 1935)

For every n > 3, ES(n) < r4(5,n). Set N = ra(5, n).
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Applications of Ramsey numbers in geometry

OTy4(n) = minimum N such that every set of N points in RY in
general position contains n members that form the vertices of a
cyclic polytope.

OTy4(n) < rgy1(n,n)

Many more applications of Ramsey numbers.
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Convex polygon theorem, first proof

Theorem (Colon-Fox-Sudakov, 2008)

2cn2 log n

ES(n) < n(5,n) <2

V = {N points in the plane in general position}
E = {4-tuples in convex position}

Better bounds for hypergraphs defined geometrically?
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Definition of semi-algebraic hypergraphs

We say that H = (V, E) is a semi-algebraic k-uniform
hypergraph in d-space if

V = {n points in R9}

E defined by polynomials fi, ..., f; and a Boolean formula ® such
that

(pi17 ---»Pik) €k

< O(A(piys - Pi) > 0,0, fe(piys ooy Pi) > 0) = yes

Complexity of H is at most C if d, t and degree of the f;-s is at
most C (constant).
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Definition

We define the semi-algebraic Ramsey number r§®™ (s, n) to be the
minimum integer N such that any N-vertex k-uniform
semi-algebraic hypergraph H (in R?) contains either a clique of
size s or an independent set of size n.

Problem: Estimate ri*™ (s, n).

r,fe’"i(s, n) < re(s,n)=N
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Diagonal Semi-algebraic Ramsey numbers

Theorem (Alon, Pach, Pinchasi, Radoiti¢, Sharir 2005)

rs€™i(n, n) < n.

Theorem (Conlon, Fox, Pach, Sudakov, S. 2012)

. C/
2 < pSemi(p ) < 2

For k > 4

tk—1(can) < r,femi(n, n) < tx_1(n).

Classical Ramsey numbers:

2n/2 < ro(n, n) < 22 pen® < r3(n,n) < 2%7.

ti_1(n®) < re(n, n) < ti(cn).
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Off diagonal semi-algebraic Ramsey numbers

rzemi(s7 n) < rzemi(n’ n)

Theorem (Alon, Pach, Pinchasi, Radoici¢, Sharir 2005)

rzsemi(n’ n) < net.

For fixed s > 3, r§*™ (s, n) = O(n)

Andrew Suk (UC San Diego) Ramsey numbers: combinatorial and algebraic



Off diagonal semi-algebraic Ramsey numbers

Theorem (Alon, Pach, Pinchasi, Radoici¢, Sharir 2005)

r5¥™ (n, n) < n.

For fixed s > 3, r§*™ (s, n) = O(n)

Andrew Suk (UC San Diego) Ramsey numbers: combinatorial and algebraic



Off diagonal semi-algebraic Ramsey numbers

Theorem (Alon, Pach, Pinchasi, Radoiti¢, Sharir 2005)

rzsemi(n, n) < n.

Theorem (Fox-Pach-Suk 2017+)

résemi(lo’ n) > n4/3
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Off diagonal semi-algebraic Ramsey numbers

Theorem (Conlon-Fox-Pach-Sudakov-S. 2013)

n¢ < rsemi(s, n) < 2™,

twrk_z(ncl) < r,femi(s, n) < r,femi(n, n) < twrg_1(n°).

- - C
Classical version: r3(s,n) <2"

Conjecture (Conlon-Fox-Pach-Sudakov-S.)

r3semi(s, n) < n¢
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Theorem (S. 2016)

5™ (s, n) < o,

1
0(1) = loglogn-

Conjecture (Conlon-Fox-Pach-Sudakov-S.)

r?femi(s’ n) < n¢
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Exponential tower improvement

Theorem (Conlon-Fox-Pach-Sudakov-S. 2012)

For semi-algebraic graphs in R, r; —*¢™(s, n) < Dlog”

Conjecture (Conlon-Fox-Pach-Sudakov-S.)

r§emi(s, n) < n¢
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Exponential tower improvement

Theorem (Conlon-Fox-Pach-Sudakov-S. 2012)

: . . _semi c
For semi-algebraic graphs in R, ry ™ (s, n) < 2'%8" "

Proof. VV = {N = 2°°€° " points in R}, no RED K?.
E={(v1,n,wn3) € (\;) : f(vi, va,v3) > 0},
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Exponential tower improvement

Theorem (Conlon-Fox-Pach-Sudakov-S. 2012)

For semi-algebraic graphs in R, r; —*™(s, n) < Dlog”

Proof. V = {N = 2°°¢°" points in R}, no RED Kf’).
E={(v1,n,v3) € (\3{) : f(vi, va,v3) > 0},

Vi v, %
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Exponential tower improvement

Theorem (Conlon-Fox-Pach-Sudakov-S. 2012)

For semi-algebraic graphs in R, ry —*™(s, n) < Dlog” n

Proof. V = {N = 2°°€° " points in R}, no RED K(?.
E={(v1,v,wn3) € (\;) : f(vi, va,v3) > 0},

f(v, Vs, X)

Andrew Suk (UC San Diego) Ramsey numbers: combinatorial and algebraic



Exponential tower improvement

Theorem (Conlon-Fox-Pach-Sudakov-S. 2012)

: . . —semi c
For semi-algebraic graphs in R, r§ semi(s, n) < 2log™n

Proof. V = {N = 2°°€° " points in R}, no RED K?.
E={(v1,n,v3) € (\;) : f(vi, v, v3) > 0},

f(v, Vs, X)
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Exponential tower improvement

Theorem (Conlon-Fox-Pach-Sudakov-S. 2012)

For semi-algebraic graphs in R, ry ™ (s, n) < Dlog”

Proof. V = {N = 2°°¢° " points in R}, no RED Kf’).
E={(v1,v,wn3) € (\3{) : f(va, v, v3) > 0}.

(v, V5, X)
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Exponential tower improvement

Theorem (Conlon-Fox-Pach-Sudakov-S. 2012)

: . . _semi c
For semi-algebraic graphs in R, ry ™ (s, n) < 2'%8" "

Proof. V = {N = 2°°€° " points in R}, no RED K%
E={(v1,n,wn3) € (\;) : f(va, v, v3) > 0}.

f(\, Vs, X)

Key idea: Apply induction on the number of roots.
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Induction on the number of roots

Base Case: Every pair gives rise to a polynomial with no roots
within the interval

f(v, Vs, X)
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Base Case: Every pair gives rise to a polynomial with no roots
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Induction on the number of roots

Base Case: Every pair gives rise to a polynomial with no roots
within the interval

(v, Vo, X)
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Induction on the number of roots

Inductive Step: Every pair gives rise to a polynomial with at most
t roots.
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Induction on the number of roots

Inductive Step: Every pair gives rise to a polynomial with at most
t roots.

E-—- > dxt——d—
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Induction on the number of roots

Inductive Step: Every pair gives rise to a polynomial with at most
t roots.

/N UN YN YN
| | |
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Induction on the number of roots

Inductive Step: Every pair gives rise to a polynomial with at most
t roots.

/N
B R
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Induction on the number of roots

Inductive Step: Every pair gives rise to a polynomial with at most
t roots.

/N
L R e
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Induction on the number of roots

Inductive Step: Every pair gives rise to a polynomial with at most
t roots.
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Induction on the number of roots

Inductive Step: Every pair gives rise to a polynomial with at most
t roots.

Find a monochromatic subset of size N°€.

Andrew Suk (UC San Diego) Ramsey numbers: combinatorial and algebraic



Sturm'’s theorem

E={(v1,n,v) € (\3{) : f(va, v2, v3) > 0}

Definition (Sturm sequence)

Set go(z) = f(x,y, z). Then define gi(z) = g{(z),
8(z) = —rem(go, g1),

g,‘(Z) = _rem(gf—27gi—1)7
where rem(gi_», gi—1) is the remainder when computing the

long-division £=2
ong-divisio 2

Theorem (Sturm)

Given a Sturm sequence gy, g1, - - -, 8k, let o(a) denote the number
of sign changes in the sequence gy(a), g1(a),...,gk(a). Then the
number of distinct roots of g(z) = f(x, y, z) inside the interval

[a, b] is o(a) — o(b).
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Semi-algebraic graph

X(vi1, v2) = blue if fewer than t roots.

X(vi, v2) = red if t roots.

go(a),g1(a), ..., gk(a) = f(x,y,a), A(x,y,a),..., fk(x,y,a)
go(b), g1(b),...,gk(b) = f(x,y,b), fi(x,y,b),..., fk(x,y,b)
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Semi-algebraic graph

X(v1, v2) = blue if fewer than t roots.

x(v1, v») = red if t roots.

go(a), g1(a), ..., gk(a) = f(x,y,a), A(x,y,a),..., fk(x,y,a)
go(b), g1(b),...,gk(b) = f(x,y,b), f(x,y,b),..., fk(x,y,b)
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Semi-algebraic graph

X(v1, v2) = blue if fewer than t roots.

x(v1,v») = red if t roots.

go(a), g1(a), ..., gk(a) = f(x,y,a), A(x,y,a),..., fk(x,y,a)
go(b), g1(b),...,gk(b) = f(x,y,b), fi(x,y,b),..., fk(x,y,b)

/N

NS
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Open combinatorial problems

Problem (Erdés $500)

Close the gap for r3(n, n).

P r3(n, n) < 227

Problem (Erdés-Hajnal 1972)
Close the gap for ra(5, n).

2nc log n ocn

< rn(5,n) <2
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Open geometric problems

Conjecture (Conlon-Fox-Pach-Sudakov-S. 2012, S. 2016)

Close the gap for r§*™ (4, n)

g o(1
n© < r§mi(4,n) < 2" @

Theorem (Erdés-Szekeres, Conlon-Fox-Pach-Sudakov-S)

PR = r3se’"i(n, n) < on‘

| A\

Problem

2cn2 < r;emi(n’ n)
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Thank youl!
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