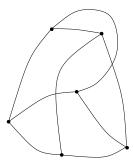
Quasiplanar graphs, string graphs, and Erdős-Gallai

Andrew Suk (UC San Diego)

Graph Drawing 2022

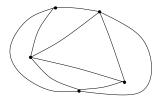
Topological Graph G = (V, E)

- V = points in the plane.
- E = curves connecting the corresponding points (vertices).



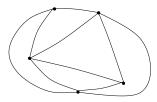
Theorem (Euler)

Every n-vertex topological graph with no crossing edges has at most 3n - 6 edges.



Theorem (Euler)

Every n-vertex topological graph with no crossing edges has at most 3n - 6 edges.

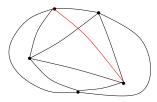


A topological graph is called *k*-**quasi-planar**, if there are no *k* pairwise crossing edges.

Conjecture

Theorem (Euler)

Every n-vertex topological graph with no crossing edges has at most 3n - 6 edges.



A topological graph is called *k*-**quasi-planar**, if there are no *k* pairwise crossing edges.

Conjecture

Every n-vertex k-quasi-planar graph has at most $O_k(n)$ edges.

Solved

- k = 3, Pach-Radoicic-Toth 2003, Ackerman-Tardos 2007.
- *k* = 4, Ackerman 2009.

Every n-vertex k-quasi-planar graph has at most $O_k(n)$ edges.

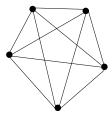
Solved

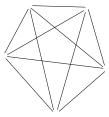
- k = 3, Pach-Radoicic-Toth 2003, Ackerman-Tardos 2007.
- *k* = 4, Ackerman 2009.

Best known bounds

•
$$k \ge 5$$
, $n(\frac{c \log n}{\log k})^{O(\log k)}$, Fox-Pach 2014.

- $k \ge 5$, $O(n \log^{4k-16})$, Pach-Radoicic-Toth 2006.
- Straight-line edges, $O(n \log n)$ Valtr 1997.





Every n-vertex k-quasi-planar graph has at most $O_k(n)$ edges.

Conjecture (Erdős)

Given a family of segments in the plane with no k pairwise crossing members, can we properly color them with f(k) colors?

Every n-vertex k-quasi-planar graph has at most $O_k(n)$ edges.

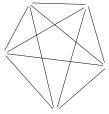
Conjecture (Erdős)

Conjecture

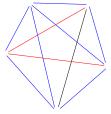
Every n-vertex k-quasi-planar graph has at most $O_k(n)$ edges.

Conjecture (Erdős)

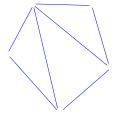
Every K_k -free string graph has chromatic number at most f(k).



Conjecture (Erdős)

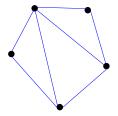


Conjecture (Erdős)



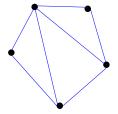
Conjecture (Erdős)

$$\frac{|E(G)|}{f(k)}$$



Conjecture (Erdős)

$$\frac{|E(G)|}{f(k)} \leq 3(n-6) \quad \Rightarrow \quad |E(G)| \leq O_k(n)$$



Conjecture (Erdős)

Every K_k -free intersection graph of segments in the plane has chromatic number at most f(k).

Conjecture is False!

Theorem (Pawlik, Kozik, Krawczyk, Larson, Micek, Trotter, Walczak)

For every positive integer m, there is a K_3 -free intersection graph of m segments in the plane whose chromatic number at least $\Omega(\log \log m)$.

Theorem (Pawlik, Kozik, Krawczyk, Larson, Micek, Trotter, Walczak)

For every positive integer m, there is a K_3 -free intersection graph of m segments in the plane whose chromatic number at least $\Omega(\log \log m)$.

No large independent set

Theorem (Walczak)

For every positive integer *m*, there is a K_3 -free intersection graph of *m* segments in the plane whose independence number is $O(\frac{m}{\log \log m})$.

Theorem (Pawlik, Kozik, Krawczyk, Larson, Micek, Trotter, Walczak)

For every positive integer m, there is a K_3 -free intersection graph of m segments in the plane whose chromatic number at least $\Omega(\log \log m)$.

No large independent set

Theorem (Walczak)

For every positive integer *m*, there is a K_3 -free intersection graph of *m* segments in the plane whose independence number is $O(\frac{m}{\log \log m})$.

Best hope for k-quasi-planar graphs: $|E(G)| \leq O_k(n \log \log n)$

Small hope: Erdős-Gallai, Erdős-Rogers type results

Conjecture

Small hope: Erdős-Gallai, Erdős-Rogers type results

Conjecture

Every n-vertex k-quasi-planar graph has at most $O_k(n)$ edges.

Solved

- k = 3, Pach-Radoicic-Toth 2003, Ackerman-Tardos 2007 (Agarwal-Aronov-Pach-Pollack-Sharir 1997).
- *k* = 4, Ackerman 2009.

Every n-vertex k-quasi-planar graph has at most $O_k(n)$ edges.

Solved

- k = 3, Pach-Radoicic-Toth 2003, Ackerman-Tardos 2007 (Agarwal-Aronov-Pach-Pollack-Sharir 1997).
- *k* = 4, Ackerman 2009.

Problem. Given a K_5 -free intersection graph of m segments in the plane, is there an induced K_4 -free subgraph on $\Omega(m)$ vertices?

|E(G)|=O(n).

Every n-vertex k-quasi-planar graph has at most $O_k(n)$ edges.

Solved

- k = 3, Pach-Radoicic-Toth 2003, Ackerman-Tardos 2007 (Agarwal-Aronov-Pach-Pollack-Sharir 1997).
- *k* = 4, Ackerman 2009.

Problem. Given a K_k -free intersection graph of m segments in the plane, is there an induced K_{k-1} -free subgraph on $\Omega(m)$ vertices?

$$|E(G)|=O_k(n).$$

Problem

Given a K_k -free intersection graph of m segments in the plane, is there an induced K_{k-1} -free subgraph on $\Omega(m)$ vertices?

Note true for k = 3, but **Open** for k > 3.

Problem

Given a K_k -free intersection graph of m segments in the plane, is there an induced K_{k-1} -free subgraph on $\Omega(m)$ vertices?

Note true for k = 3, but **Open** for k > 3.

Theorem (Walczak)

For every positive integer *m*, there is a K_3 -free intersection graph of *m* segments in the plane whose independence number is $O(\frac{m}{\log \log m})$.

Does not generalize to large cliques

String graph: Intersection graph of curves in the plane.

String graph: Intersection graph of curves in the plane.

Theorem (Tomon 2022)

Every n-vertex string graph contains a clique or independent set of size n^{ϵ} .

String graph: Intersection graph of curves in the plane.

Theorem (Tomon 2022)

Every n-vertex string graph contains a clique or independent set of size n^{ϵ} .

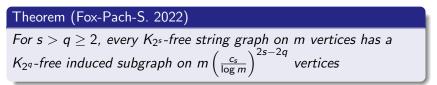
Erdős-Gallai, Erdős-Rogers type result

Theorem (Fox-Pach-S. 2022)

For $s > q \ge 2$, every K_{2^s} -free string graph on m vertices has a K_{2^q} -free induced subgraph on $m \left(\frac{c_s}{\log m}\right)^{2s-2q}$ vertices

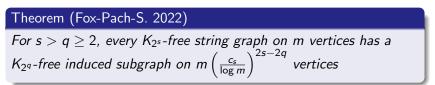
Application: Back to k-quasi-planar graphs

Erdős-Gallai, Erdős-Rogers type result



Application: Back to k-quasi-planar graphs

Erdős-Gallai, Erdős-Rogers type result



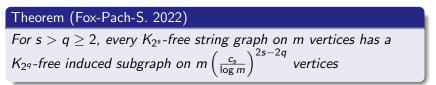
Theorem (Fox-Pach-S. 2022)

For $s \ge 3$, every 2^s -quasi-planar graph on n vertices has at most $c_s n (\log n)^{2s-4}$ edges.

Fox-Pach 2014: $n (\log n)^{O(s)}$, $O(s) \approx 50s$.

Application: Back to k-quasi-planar graphs

Erdős-Gallai, Erdős-Rogers type result



Theorem (Fox-Pach-S. 2022)

Every 8-quasi-planar graph on n vertices has at most $O(n \log^2 n)$ edges.

Pach-Radoicic-Toth 2006, Ackerman 2009: $O(n \log^{16} n)$.

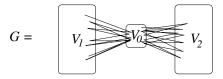
Theorem (Fox-Pach-S. 2022)

For $s > q \ge 2$, every K_{2^s} -free string graph on m vertices has a K_{2^q} -free induced subgraph on $m\left(\frac{c_s}{\log m}\right)^{2s-2q}$ vertices

Theorem (Fox-Pach-S. 2022)

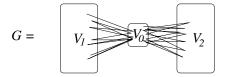
For $s > q \ge 2$, every K_{2^s} -free string graph on m vertices has a K_{2^q} -free induced subgraph on $m\left(\frac{c_s}{\log m}\right)^{2s-2q}$ vertices

Key ingredient: Separator theorem $G = (V, E), V = V_0 \cup V_1 \cup V_2, V_0$ separator, $|V_1|, |V_2| < \frac{2}{3}|V|$.



Sketch proof

Key ingredient: Separator theorem $G = (V, E), V = V_0 \cup V_1 \cup V_2, V_0$ separator, $|V_1|, |V_2| < \frac{2}{3}|V|$.



Theorem (Lee 2016)

Every string graph on m vertices and e edges has a separator of size $O(\sqrt{e})$.

Matousek 2013: $O(\sqrt{e} \log e)$

Key ingredient: Extending a result of Tomon

Lemma

Let G = (V, E) be a string graph with m vertices and at least αm^2 edges. Then there are disjoint subsets $V_1 \cup \cdots \cup V_t \subset V$, $t \ge 2$, such that

1 V_i is complete to V_j , and

$$|V_i| \ge c\alpha \frac{m}{t^2}$$

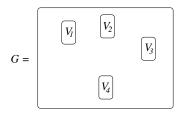
Key ingredient: Extending a result of Tomon

Lemma

Let G = (V, E) be a string graph with m vertices and at least αm^2 edges. Then there are disjoint subsets $V_1 \cup \cdots \cup V_t \subset V$, $t \ge 2$, such that

1 V_i is complete to V_j , and

$$|V_i| \ge c \alpha \frac{m}{t^2}$$



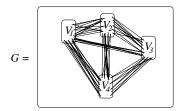
Key ingredient: Extending a result of Tomon

Lemma

Let G = (V, E) be a string graph with m vertices and at least αm^2 edges. Then there are disjoint subsets $V_1 \cup \cdots \cup V_t \subset V$, $t \ge 2$, such that

1 V_i is complete to V_j , and

$$|V_i| \ge c \alpha \frac{m}{t^2}$$



Theorem (Fox-Pach-S. 2022)

For $s > q \ge 2$, every K_{2^s} -free string graph on m vertices has a K_{2^q} -free induced subgraph on $m\left(\frac{c_s}{\log m}\right)^{2s-2q}$ vertices

Proof. Induction on s and m. G =string graph of m curves.

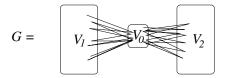
Theorem (Fox-Pach-S. 2022)

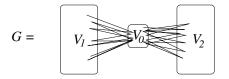
For $s > q \ge 2$, every K_{2^s} -free string graph on m vertices has a K_{2^q} -free induced subgraph on $m\left(\frac{c_s}{\log m}\right)^{2s-2q}$ vertices

Proof. Induction on s and m. G =string graph of m curves.

Case 1. G has less than $\varepsilon \frac{m^2}{\log^2 m}$ edges. Separator of size $c\sqrt{\varepsilon} \frac{m}{\log m}$.

$$G = V_1 + V_2 + V_2$$





$$|V_1| \left(\frac{c_s}{\log|V_1|}\right)^{2s-2q} + |V_2| \left(\frac{c_s}{\log|V_2|}\right)^{2s-2q}$$

$$|V_1| \left(\frac{c_s}{\log|V_1|}\right)^{2s-2q} + |V_2| \left(\frac{c_s}{\log|V_2|}\right)^{2s-2q}$$

$$|V_1| \left(\frac{c_s}{\log|V_1|}\right)^{2s-2q} + |V_2| \left(\frac{c_s}{\log|V_2|}\right)^{2s-2q}$$

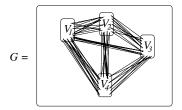
$$\geq (|V_1| + |V_2|) \left(\frac{c_{\mathsf{s}}}{\log 2m/3}\right)^{2s-2q} \geq m \frac{(1 - \frac{c\sqrt{\varepsilon}}{\log m})(c_{\mathsf{s}})^{2s-2q}}{\left(\log m - \log(3/2)\right)^{2s-2q}}$$

$$|V_1| \left(\frac{c_s}{\log|V_1|}\right)^{2s-2q} + |V_2| \left(\frac{c_s}{\log|V_2|}\right)^{2s-2q}$$

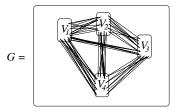
$$\geq (|V_1| + |V_2|) \left(\frac{c_s}{\log 2m/3}\right)^{2s-2q} \geq m \frac{(1 - \frac{c\sqrt{\varepsilon}}{\log m})(c_s)^{2s-2q}}{\left(\log m - \log(3/2)\right)^{2s-2q}}$$

$$= m \left(\frac{c_s}{\log m}\right)^{2s-2q} \frac{1 - \frac{c\sqrt{\varepsilon}}{\log m}}{\left(1 - \frac{\log(3/2)}{\log m}\right)^{2s-2q}}$$

Case 2. G has at least $\varepsilon \frac{m^2}{\log^2 m}$ edges. $t = 2^p$ $V_1, \ldots, V_t \subset V$, V_i is complete to V_j . $|V_i| \ge c\varepsilon \frac{m}{t^2 \log^2 m}$



Case 2. G has at least $\varepsilon \frac{m^2}{\log^2 m}$ edges. $t = 2^p$ $V_1, \ldots, V_t \subset V$, V_i is complete to V_j . $|V_i| \ge c\varepsilon \frac{m}{t^2 \log^2 m}$



One part V_i is $K_{2^{s-p}}$ -free.

One part V_i is $K_{2^{s-p}}$ -free.

Case 2.a. If $2^{s-p} \leq 2^q$, then V_i is K_{2^q} -free. $t = 2^p \geq 2^{s-q}$

$$|V_i| \ge c\varepsilon \frac{m}{t^2 \log^2 m}$$

One part V_i is $K_{2^{s-p}}$ -free.

Case 2.a. If $2^{s-p} \leq 2^q$, then V_i is K_{2^q} -free. $t = 2^p \geq 2^{s-q}$

$$|V_i| \ge c \varepsilon \frac{m}{t^2 \log^2 m}$$

 $\ge c \varepsilon \frac{m}{2^2 \log^2 m} \ge m \left(\frac{c_s}{\log m}\right)^{2s-2q}$

One part V_i is $K_{2^{s-p}}$ -free. Case 2.b. If $2^{s-p} > 2^q$, then $t \le 2^{s-q}$.

$$|V_i| \ge c\varepsilon \frac{m}{t^2 \log^2 m}$$

Apply induction on V_i to find a K_{2^q} -free subset

$$\begin{aligned} |V_i| \left(\frac{c_{s-p}}{\log|V_i|}\right)^{2(s-p)-2q} &\geq c\varepsilon \frac{m}{t^2 \log^2 m} \left(\frac{c_{s-p}}{\log m}\right)^{2(s-p)-2q} \\ &\geq m \left(\frac{c_s}{\log m}\right)^{2s-2q} \Box \end{aligned}$$

Erdős-Gallai, Erdős-Rogers type problems

Problem. Given a K_k -free intersection graph of m segments in the plane, is there an induced K_{k-1} -free subgraph on $\Omega(m)$ vertices? False for k = 3, but open for k > 3.

Erdős-Gallai, Erdős-Rogers type problems

Problem. Given a K_k -free intersection graph of m segments in the plane, is there an induced K_{k-1} -free subgraph on $\Omega(m)$ vertices? False for k = 3, but open for k > 3.

Problem. Given a K_k -free intersection graph of **chords of a circle**, is there an induced K_{k-1} -free subgraph on $\Omega(m)$ vertices?

Thank you!