Quasiplanar graphs, string graphs, and Erdős-Gallai

Andrew Suk (UC San Diego)

Graph Drawing 2022

Topological Graph $G=(V, E)$

$V=$ points in the plane.
$E=$ curves connecting the corresponding points (vertices).

Quasi-planar graphs

Theorem (Euler)

Every n-vertex topological graph with no crossing edges has at most $3 n-6$ edges.

Quasi-planar graphs

Theorem (Euler)

Every n-vertex topological graph with no crossing edges has at most $3 n-6$ edges.

A topological graph is called k-quasi-planar, if there are no k pairwise crossing edges.

Conjecture

Every n-vertex k-quasi-planar graph has at most $O_{k}(n)$ edges.

Quasi-planar graphs

Theorem (Euler)

Every n-vertex topological graph with no crossing edges has at most $3 n-6$ edges.

A topological graph is called k-quasi-planar, if there are no k pairwise crossing edges.

Conjecture

Every n-vertex k-quasi-planar graph has at most $O_{k}(n)$ edges.

Quasi-planar graphs

Conjecture

Every n-vertex k-quasi-planar graph has at most $O_{k}(n)$ edges.

Quasi-planar graphs

Conjecture

Every n-vertex k-quasi-planar graph has at most $O_{k}(n)$ edges.
Solved

- $k=3$, Pach-Radoicic-Toth 2003, Ackerman-Tardos 2007.
- $k=4$, Ackerman 2009.

Quasi-planar graphs

Conjecture

Every n-vertex k-quasi-planar graph has at most $O_{k}(n)$ edges.
Solved

- $k=3$, Pach-Radoicic-Toth 2003, Ackerman-Tardos 2007.
- $k=4$, Ackerman 2009.

Best known bounds

- $k \geq 5, n\left(\frac{c \log n}{\log k}\right)^{O(\log k)}$, Fox-Pach 2014.
- $k \geq 5, O\left(n \log ^{4 k-16}\right)$, Pach-Radoicic-Toth 2006.
- Straight-line edges, $O(n \log n)$ Valtr 1997.

Natural approach: Intersection graphs

Conjecture

Every n-vertex k-quasi-planar graph has at most $O_{k}(n)$ edges.

Natural approach: Intersection graphs

Conjecture

Every n-vertex k-quasi-planar graph has at most $O_{k}(n)$ edges.

Natural approach: Intersection graphs

Conjecture

Every n-vertex k-quasi-planar graph has at most $O_{k}(n)$ edges.

Conjecture (Erdős)

Given a family of segments in the plane with no k pairwise crossing members, can we properly color them with $f(k)$ colors?

Natural approach: Intersection graphs

Conjecture

Every n-vertex k-quasi-planar graph has at most $O_{k}(n)$ edges.

Conjecture (Erdős)

Every K_{k}-free intersection graph of segments in the plane has chromatic number at most $f(k)$.

Natural approach: Intersection graphs

Conjecture

Every n-vertex k-quasi-planar graph has at most $O_{k}(n)$ edges.

Conjecture (Erdős)

Every K_{k}-free string graph has chromatic number at most $f(k)$.

Natural approach: Intersection graphs

Conjecture (Erdős)

Every K_{k}-free intersection graph of segments in the plane has chromatic number at most $f(k)$.

Natural approach: Intersection graphs

Conjecture (Erdős)

Every K_{k}-free intersection graph of segments in the plane has chromatic number at most $f(k)$.

Natural approach: Intersection graphs

Conjecture (Erdős)

Every K_{k}-free intersection graph of segments in the plane has chromatic number at most $f(k)$.

$$
\frac{|E(G)|}{f(k)}
$$

Natural approach: Intersection graphs

Conjecture (Erdős)

Every K_{k}-free intersection graph of segments in the plane has chromatic number at most $f(k)$.

$$
\frac{|E(G)|}{f(k)} \leq 3(n-6) \quad \Rightarrow \quad|E(G)| \leq O_{k}(n)
$$

Natural approach: Intersection graphs

Conjecture (Erdős)

Every K_{k}-free intersection graph of segments in the plane has chromatic number at most $f(k)$.

Conjecture is False!

Problems with this approach

Theorem (Pawlik, Kozik, Krawczyk, Larson, Micek, Trotter, Walczak)
 For every positive integer m, there is a K_{3}-free intersection graph of m segments in the plane whose chromatic number at least $\Omega(\log \log m)$.

Problems with this approach

> Theorem (Pawlik, Kozik, Krawczyk, Larson, Micek, Trotter, Walczak)
> For every positive integer m, there is a K_{3}-free intersection graph of m segments in the plane whose chromatic number at least $\Omega(\log \log m)$.

No large independent set

Theorem (Walczak)

For every positive integer m, there is a K_{3}-free intersection graph of m segments in the plane whose independence number is $O\left(\frac{m}{\log \log m}\right)$.

Problems with this approach

Theorem (Pawlik, Kozik, Krawczyk, Larson, Micek, Trotter, Walczak)

For every positive integer m, there is a K_{3}-free intersection graph of m segments in the plane whose chromatic number at least $\Omega(\log \log m)$.

No large independent set

Theorem (Walczak)

For every positive integer m, there is a K_{3}-free intersection graph of m segments in the plane whose independence number is $O\left(\frac{m}{\log \log m}\right)$.

Best hope for k-quasi-planar graphs: $|E(G)| \leq O_{k}(n \log \log n)$

Small hope: Erdős-Gallai, Erdős-Rogers type results

Conjecture

Every n-vertex k-quasi-planar graph has at most $O_{k}(n)$ edges.

Small hope: Erdős-Gallai, Erdős-Rogers type results

Conjecture

Every n-vertex k-quasi-planar graph has at most $O_{k}(n)$ edges.

Solved

- $k=3$, Pach-Radoicic-Toth 2003, Ackerman-Tardos 2007 (Agarwal-Aronov-Pach-Pollack-Sharir 1997).
- $k=4$, Ackerman 2009.

Small hope: Erdős-Gallai, Erdős-Rogers type results

Conjecture

Every n-vertex k-quasi-planar graph has at most $O_{k}(n)$ edges.

Solved

- $k=3$, Pach-Radoicic-Toth 2003, Ackerman-Tardos 2007 (Agarwal-Aronov-Pach-Pollack-Sharir 1997).
- $k=4$, Ackerman 2009.

Problem. Given a K_{5}-free intersection graph of m segments in the plane, is there an induced K_{4}-free subgraph on $\Omega(m)$ vertices?

$$
|E(G)|=O(n)
$$

Small hope: Erdős-Gallai, Erdős-Rogers type results

Conjecture

Every n-vertex k-quasi-planar graph has at most $O_{k}(n)$ edges.

Solved

- $k=3$, Pach-Radoicic-Toth 2003, Ackerman-Tardos 2007 (Agarwal-Aronov-Pach-Pollack-Sharir 1997).
- $k=4$, Ackerman 2009.

Problem. Given a K_{k}-free intersection graph of m segments in the plane, is there an induced K_{k-1}-free subgraph on $\Omega(m)$ vertices?

$$
|E(G)|=O_{k}(n)
$$

Small hope: Erdős-Gallai, Erdős-Rogers type results

Problem

Given a K_{k}-free intersection graph of m segments in the plane, is there an induced K_{k-1}-free subgraph on $\Omega(m)$ vertices?

Note true for $k=3$, but Open for $k>3$.

Small hope: Erdős-Gallai, Erdős-Rogers type results

Problem

Given a K_{k}-free intersection graph of m segments in the plane, is there an induced K_{k-1}-free subgraph on $\Omega(m)$ vertices?

Note true for $k=3$, but Open for $k>3$.

Theorem (Walczak)

For every positive integer m, there is a K_{3}-free intersection graph of m segments in the plane whose independence number is $O\left(\frac{m}{\log \log m}\right)$.

Does not generalize to large cliques

New results on string graphs

String graph: Intersection graph of curves in the plane.

New results on string graphs

String graph: Intersection graph of curves in the plane.
Theorem (Tomon 2022)
Every n-vertex string graph contains a clique or independent set of size n^{ϵ}.

New results on string graphs

String graph: Intersection graph of curves in the plane.

Theorem (Tomon 2022)

Every n-vertex string graph contains a clique or independent set of size n^{ϵ}.

Erdős-Gallai, Erdős-Rogers type result

Theorem (Fox-Pach-S. 2022)

For $s>q \geq 2$, every $K_{2^{s}}$-free string graph on m vertices has a $K_{2^{q}}$-free induced subgraph on $m\left(\frac{c_{s}}{\log m}\right)^{2 s-2 q}$ vertices

Application: Back to k-quasi-planar graphs

Erdős-Gallai, Erdős-Rogers type result

Theorem (Fox-Pach-S. 2022)

For $s>q \geq 2$, every $K_{2^{s}}$-free string graph on m vertices has a $K_{2 q}$-free induced subgraph on $m\left(\frac{c_{s}}{\log m}\right)^{2 s-2 q}$ vertices

Application: Back to k-quasi-planar graphs

Erdős-Gallai, Erdős-Rogers type result

Theorem (Fox-Pach-S. 2022)

For $s>q \geq 2$, every $K_{2^{s}}$-free string graph on m vertices has a $K_{2^{q}}$-free induced subgraph on $m\left(\frac{c_{s}}{\log m}\right)^{2 s-2 q}$ vertices

Theorem (Fox-Pach-S. 2022)

For $s \geq 3$, every 2^{s}-quasi-planar graph on n vertices has at most $c_{s} n(\log n)^{2 s-4}$ edges.

Fox-Pach 2014: $n(\log n)^{O(s)}, O(s) \approx 50 s$.

Application: Back to k-quasi-planar graphs

Erdős-Gallai, Erdős-Rogers type result

Theorem (Fox-Pach-S. 2022)

For $s>q \geq 2$, every $K_{2^{s}}$-free string graph on m vertices has a $K_{2 q}$-free induced subgraph on $m\left(\frac{c_{s}}{\log m}\right)^{2 s-2 q}$ vertices

Theorem (Fox-Pach-S. 2022)

Every 8-quasi-planar graph on n vertices has at most $O\left(n \log ^{2} n\right)$ edges.

Pach-Radoicic-Toth 2006, Ackerman 2009: $O\left(n \log ^{16} n\right)$.

Sketch proof

Theorem (Fox-Pach-S. 2022)

For $s>q \geq 2$, every $K_{2^{s}}$-free string graph on m vertices has a $K_{2^{q}}$-free induced subgraph on $m\left(\frac{c_{s}}{\log m}\right)^{2 s-2 q}$ vertices

Sketch proof

Theorem (Fox-Pach-S. 2022)

For $s>q \geq 2$, every $K_{2^{s}}$-free string graph on m vertices has a $K_{2 q}$-free induced subgraph on $m\left(\frac{c_{s}}{\log m}\right)^{2 s-2 q}$ vertices

Key ingredient: Separator theorem

$G=(V, E), V=V_{0} \cup V_{1} \cup V_{2}, V_{0}$ separator, $\left|V_{1}\right|,\left|V_{2}\right|<\frac{2}{3}|V|$.

Sketch proof

Key ingredient: Separator theorem
$G=(V, E), V=V_{0} \cup V_{1} \cup V_{2}, V_{0}$ separator, $\left|V_{1}\right|,\left|V_{2}\right|<\frac{2}{3}|V|$.

Theorem (Lee 2016)

Every string graph on m vertices and e edges has a separator of size $O(\sqrt{e})$.

Matousek 2013: $O(\sqrt{e} \log e)$

Sketch proof

Key ingredient: Extending a result of Tomon

Lemma

Let $G=(V, E)$ be a string graph with m vertices and at least αm^{2} edges. Then there are disjoint subsets $V_{1} \cup \cdots \cup V_{t} \subset V, t \geq 2$, such that
(1) V_{i} is complete to V_{j}, and
(2) $\left|V_{i}\right| \geq c \alpha \frac{m}{t^{2}}$

Sketch proof

Key ingredient: Extending a result of Tomon

Lemma

Let $G=(V, E)$ be a string graph with m vertices and at least αm^{2} edges. Then there are disjoint subsets $V_{1} \cup \cdots \cup V_{t} \subset V, t \geq 2$, such that
(1) V_{i} is complete to V_{j}, and
(2) $\left|V_{i}\right| \geq c \alpha \frac{m}{t^{2}}$

Sketch proof

Key ingredient: Extending a result of Tomon

Lemma

Let $G=(V, E)$ be a string graph with m vertices and at least αm^{2} edges. Then there are disjoint subsets $V_{1} \cup \cdots \cup V_{t} \subset V, t \geq 2$, such that
(1) V_{i} is complete to V_{j}, and
(2) $\left|V_{i}\right| \geq c \alpha \frac{m}{t^{2}}$

Sketch proof

Theorem (Fox-Pach-S. 2022)

For $s>q \geq 2$, every $K_{2^{s}}$-free string graph on m vertices has a $K_{2^{q}}$-free induced subgraph on $m\left(\frac{c_{s}}{\log m}\right)^{2 s-2 q}$ vertices

Proof. Induction on s and m. $G=$ string graph of m curves.

Sketch proof

Theorem (Fox-Pach-S. 2022)

For $s>q \geq 2$, every $K_{2^{s}}$-free string graph on m vertices has a $K_{2^{q}}$-free induced subgraph on $m\left(\frac{c_{s}}{\log m}\right)^{2 s-2 q}$ vertices

Proof. Induction on s and m. $G=$ string graph of m curves.
Case 1. G has less than $\varepsilon \frac{m^{2}}{\log ^{2} m}$ edges. Separator of size $c \sqrt{\varepsilon} \frac{m}{\log m}$.

Sketch proof

Case 1. Separator of size $c \sqrt{\varepsilon} \frac{m}{\log m}$.

Sketch proof

Case 1. Separator of size $c \sqrt{\varepsilon} \frac{m}{\log m}$.

$$
\begin{gathered}
G= \\
\left|V_{1}\right|\left(\frac{c_{s}}{\log \left|V_{1}\right|}\right)^{2 s-2 q}+\left|V_{2}\right|\left(\frac{c_{s}}{\log \left|V_{2}\right|}\right)^{2 s-2 q}
\end{gathered}
$$

Sketch proof

Case 1. Separator of size $c \sqrt{\varepsilon} \frac{m}{\log m}$.

$$
\left|V_{1}\right|\left(\frac{c_{s}}{\log \left|V_{1}\right|}\right)^{2 s-2 q}+\left|V_{2}\right|\left(\frac{c_{s}}{\log \left|V_{2}\right|}\right)^{2 s-2 q}
$$

Sketch proof

Case 1. Separator of size $c \sqrt{\varepsilon} \frac{m}{\log m}$.

$$
\begin{gathered}
\left|V_{1}\right|\left(\frac{c_{s}}{\log \left|V_{1}\right|}\right)^{2 s-2 q}+\left|V_{2}\right|\left(\frac{c_{s}}{\log \left|V_{2}\right|}\right)^{2 s-2 q} \\
\geq\left(\left|V_{1}\right|+\left|V_{2}\right|\right)\left(\frac{c_{s}}{\log 2 m / 3}\right)^{2 s-2 q} \geq m \frac{\left(1-\frac{c \sqrt{\varepsilon}}{\log m}\right)\left(c_{s}\right)^{2 s-2 q}}{(\log m-\log (3 / 2))^{2 s-2 q}}
\end{gathered}
$$

Case 1. Separator of size $c \sqrt{\varepsilon} \frac{m}{\log m}$.

$$
\begin{gathered}
\left|V_{1}\right|\left(\frac{c_{s}}{\log \left|V_{1}\right|}\right)^{2 s-2 q}+\left|V_{2}\right|\left(\frac{c_{s}}{\log \left|V_{2}\right|}\right)^{2 s-2 q} \\
\geq\left(\left|V_{1}\right|+\left|V_{2}\right|\right)\left(\frac{c_{s}}{\log 2 m / 3}\right)^{2 s-2 q} \geq m \frac{\left(1-\frac{c \sqrt{\varepsilon}}{\log m}\right)\left(c_{s}\right)^{2 s-2 q}}{(\log m-\log (3 / 2))^{2 s-2 q}} \\
=m\left(\frac{c_{s}}{\log m}\right)^{2 s-2 q} \frac{1-\frac{c \sqrt{\varepsilon}}{\log m}}{\left(1-\frac{\log (3 / 2)}{\log m}\right)^{2 s-2 q}}
\end{gathered}
$$

Sketch proof

Case 2. G has at least $\varepsilon \frac{m^{2}}{\log ^{2} m}$ edges. $t=2^{p}$
$V_{1}, \ldots, V_{t} \subset V, V_{i}$ is complete to $V_{j} .\left|V_{i}\right| \geq c \varepsilon \frac{m}{t^{2} \log ^{2} m}$

Sketch proof

Case 2. G has at least $\varepsilon \frac{m^{2}}{\log ^{2} m}$ edges. $t=2^{p}$
$V_{1}, \ldots, V_{t} \subset V, V_{i}$ is complete to $V_{j} .\left|V_{i}\right| \geq c \varepsilon \frac{m}{t^{2} \log ^{2} m}$

One part V_{i} is $K_{2^{s-p}}$-free.

Sketch proof

One part V_{i} is $K_{2^{s-p}}$-free.
Case 2.a. If $2^{s-p} \leq 2^{q}$, then V_{i} is $K_{2^{q}}$-free. $t=2^{p} \geq 2^{s-q}$

$$
\left|V_{i}\right| \geq c \varepsilon \frac{m}{t^{2} \log ^{2} m}
$$

Sketch proof

One part V_{i} is $K_{2^{s-p}}$-free.
Case 2.a. If $2^{s-p} \leq 2^{q}$, then V_{i} is $K_{2 q}$-free. $t=2^{p} \geq 2^{s-q}$

$$
\begin{gathered}
\left|V_{i}\right| \geq c \varepsilon \frac{m}{t^{2} \log ^{2} m} \\
\geq c \varepsilon \frac{m}{2^{2} \log ^{2} m} \geq m\left(\frac{c_{s}}{\log m}\right)^{2 s-2 q}
\end{gathered}
$$

Sketch proof

One part V_{i} is $K_{2^{s-p}}$-free.
Case 2.b. If $2^{s-p}>2^{q}$, then $t \leq 2^{s-q}$.

$$
\left|V_{i}\right| \geq c \varepsilon \frac{m}{t^{2} \log ^{2} m}
$$

Apply induction on V_{i} to find a $K_{2 q}$-free subset

$$
\begin{gathered}
\left|V_{i}\right|\left(\frac{c_{s-p}}{\log \left|V_{i}\right|}\right)^{2(s-p)-2 q} \geq c \varepsilon \frac{m}{t^{2} \log ^{2} m}\left(\frac{c_{s-p}}{\log m}\right)^{2(s-p)-2 q} \\
\geq m\left(\frac{c_{s}}{\log m}\right)^{2 s-2 q} \square
\end{gathered}
$$

Concluding remarks

Erdős-Gallai, Erdős-Rogers type problems

Problem. Given a K_{k}-free intersection graph of m segments in the plane, is there an induced K_{k-1}-free subgraph on $\Omega(m)$ vertices? False for $k=3$, but open for $k>3$.

Concluding remarks

Erdős-Gallai, Erdős-Rogers type problems

Problem. Given a K_{k}-free intersection graph of m segments in the plane, is there an induced K_{k-1}-free subgraph on $\Omega(m)$ vertices? False for $k=3$, but open for $k>3$.

Problem. Given a K_{k}-free intersection graph of chords of a circle, is there an induced K_{k-1}-free subgraph on $\Omega(m)$ vertices?

Thank you!

