On the number of edges of separated multigraphs

Andrew Suk (UC San Diego)

September 16, 2021

Multigraph drawings

- Loops
- Multiple edges

Multigraph drawings

- Loops
- Multiple edges

Multigraph drawings

- Loops
- Multiple edges

Crossing lemma for multigraphs

Theorem (Euler)

Every n-vertex planar multigraph with edge multiplicity at most m has at most $(3 n-6) m$ edges.

Crossing lemma for multigraphs

Theorem (Euler)

Every n-vertex planar multigraph with edge multiplicity at most m has at most $(3 n-6) m$ edges.

Crossing lemma for multigraphs

Theorem

Every n-vertex planar multigraph with edge multiplicity at most m has at most $(3 n-6) m$ edges.

Theorem

Let G be an n-vertex multigraph with e edges and edge multiplicity at most m. Then

$$
\operatorname{cr}(G) \geq \Omega\left(\frac{e^{3}}{m \cdot n^{2}}\right)-O\left(m^{2} n\right)
$$

Crossing lemma for multigraphs

Theorem

Every n-vertex planar multigraph with edge multiplicity at most m has at most $(3 n-6) m$ edges.

Theorem

Let G be an n-vertex multigraph with e edges and edge multiplicity at most m. Then

$$
\operatorname{cr}(G) \geq \Omega\left(\frac{e^{3}}{m \cdot n^{2}}\right)-O\left(m^{2} n\right)
$$

Question (Kaufmann) Can we improve this crossing lemma for multigraphs with no empty lenses?

Crossing lemma for multigraphs

Theorem

Every n-vertex planar multigraph with edge multiplicity at most m has at most $(3 n-6) m$ edges.

Theorem

Let G be an n-vertex multigraph with e edges and edge multiplicity at most m. Then

$$
\operatorname{cr}(G) \geq \Omega\left(\frac{e^{3}}{m \cdot n^{2}}\right)-O\left(m^{2} n\right)
$$

Question (Kaufmann) How many edges can there be in a multigraph with no empty lenses?

Question (Kaufmann) How many edges can there be in a multigraph with no empty lenses?

Question (Kaufmann) How many edges can there be in a multigraph with no empty lenses?

Multigraph drawings

- No loops
- Multiple edges
- No two parallel edges cross

Multigraph drawings with no empty lenses

- No loops
- Multiple edges
- No two parallel edges cross
- no empty lenses

Multigraph drawings with no empty lenses

- No loops
- Multiple edges
- No two parallel edges cross
- no empty lenses

Multigraph drawings with no empty lenses

- No loops
- Multiple edges
- No two parallel edges cross
- no empty lenses

$$
\binom{n}{2} \cdot(n-1)=O\left(n^{3}\right) .
$$

Multigraph drawings with no empty lenses

- No loops
- Multiple edges
- No two parallel edges cross
- no empty lenses

Multigraph drawings with no empty lenses

- No loops
- Multiple edges
- No two parallel edges cross
- no empty lenses

Multigraph drawings with no empty lenses

- No loops
- Multiple edges
- No two parallel edges cross
- no empty lenses

Multigraph drawings with no empty lenses

- No loops
- Multiple edges
- No two parallel edges cross
- no empty lenses

Multigraph drawings with no empty lenses

- No loops
- Multiple edges
- No two parallel edges cross
- no empty lenses

Multigraph drawings with no empty lenses

- No loops
- Multiple edges
- No two parallel edges cross
- no empty lenses

Any two edges cross at most twice. $\Omega\left(n^{3}\right)$.

Multigraph drawings with no empty lenses

- No loops
- Multiple edges
- No two parallel edges cross
- no empty lenses
- Two edges cross at most once.

Multigraph drawings with no empty lenses

- No loops
- Multiple edges
- No two parallel edges cross
- no empty lenses
- Two edges cross at most once. Trivial: $O\left(n^{3}\right)$

Multigraph drawings with no empty lenses

- No loops
- Multiple edges
- No two parallel edges cross
- no empty lenses
- Two edges cross at most once.
- Dependent edges are non-crossing

Theorem (Pach-Tóth, 2018)

The maximum number of edges in an n-vertex multigraph that can be drawn in the plane with the rules above is $O\left(n^{2}\right)$

Multigraph drawings with no empty lenses

- No loops
- Multiple edges
- No two parallel edges cross
- no empty lenses
- Two edges cross at most once. Trivial: $O\left(n^{3}\right)$
- Dependent edges are non-crossing

Multigraph drawings with no empty lenses

- No loops
- Multiple edges
- No two parallel edges cross
- no empty lenses
- Two edges cross at most once.
- Dependent edges are non-crossing

Theorem (Pach-Tóth, 2018)

The maximum number of edges in an n-vertex multigraph that can be drawn in the plane with the rules above is $O\left(n^{2}\right)$

Multigraph drawings with no empty lenses

- No loops
- Multiple edges
- No two parallel edges cross
- no empty lenses
- Two edges cross at most once.
- Dependent edges are non-crossing

Theorem (Pach-Tóth, 2018)

The maximum number of edges in an n-vertex multigraph that can be drawn in the plane with the rules above is $O\left(n^{2}\right)$

Proof. Probabilistic Method + Thrackles

Concluding remarks

- Multiple edges
- No two parallel edges cross
- no empty lenses
- Two edges cross at most once (including dependent edges).

Theorem (Fox-Pach-Suk)

Every n-vertex multigraph that can be drawn in the plane with the properties described above has at most $O\left(n^{2} \log n\right)$ edges.

Corollary (Fox-Pach-Suk)

Let G be an n-vertex multigraph with e edges that can be drawn in the plane with the properties described above. Then

$$
\operatorname{cr}(G) \geq \Omega\left(\frac{e^{3}}{n^{2} \log n}\right)-O(n)
$$

Concluding remarks

- Multiple edges
- No two parallel edges cross
- no empty lenses
- Two edges cross at most once (including dependent edges).

Theorem (Fox-Pach-Suk)

Every n-vertex multigraph that can be drawn in the plane with the properties described above has at most $O\left(n^{2} \log n\right)$ edges.

Open problem: Is the log factor necessary?

Thank you!

