k-quasi-planar graphs

Andrew Suk

September 19, 2011

Definition

A *topological graph* is a graph drawn in the plane with vertices represented by points and edges represented by curves connecting the corresponding points. A topological graph is *simple* if every pair of its edges intersect at most once.

Definition

A *topological graph* is a graph drawn in the plane with vertices represented by points and edges represented by curves connecting the corresponding points. A topological graph is *simple* if every pair of its edges intersect at most once.

We will first only consider *simple* topological graphs.

We will first only consider *simple* topological graphs.

Definition

Two edges cross of their interiors share a point in common.

Theorem

Every n-vertex topological graph with no crossing edges contains at most 3n - 6 = O(n) edges.

Relaxation of planarity.

Conjecture

Every n-vertex topological graph with no k pairwise crossing edges contains at most O(n) edges.

All such graphs are called *k*-quasi-planar.

Special Cases

For k = 3, 4.

Theorem (Agarwal, Aronov, Pach, Pollack, Sharir 1997 and Pach, Radoičić, Tóth 2004)

Every n-vertex 3-quasi-planar graph has at most O(n) edges.

Also Ackerman and Tardos 2007.

Theorem (Ackerman 2009)

Every n-vertex 4-quasi-planar graph has at most O(n) edges.

Edges drawn with x-monotone curves.

Theorem (Valtr 1997)

Every n-vertex simple k-quasi-planar graph with edges drawn as x-monotone curves has at most $O(n \log n)$ edges.

Theorem (Pach, Shahrokhi, Szegedy 1994)

Every n-vertex simple k-quasi-planar graph has at most $O(n \log^{4k-16} n)$ edges.

Theorem (Fox and Pach 2008)

Every n-vertex simple k-quasi-planar graph has at most $n(\log n)^{O(\log k)}$ edges.

Theorem (Main Result, Suk 2011)

Every n-vertex simple k-quasi-planar graph has at most $(n \log^2 n) \cdot 2^{\alpha^{c_k}(n)}$ edges.

Main tool: generalized Davenport Schinzel sequences

Definition: The sequence $s_1, s_2, ..., s_{l \cdot t}$ is said to be of type up(l, t) if the first *l* terms are pairwise different and for i = 1, 2, ..., l

$$s_i = s_{i+1} = s_{i+21} = \cdots = s_{i+(t-1)}$$

Example: a, b, c, a, b, c is of type up(3, 2)

Example: h, w, h, w, h, w is of type up(2,3)

Do "long enough" sequences over *n* symbols always contain a subsequence of type (say) up(3, 2) as a subsequence? Example:

$$a, r, z, h, u, u, y, v, r, h, d, y, e, w, r, u, h$$

 $a,\underline{r},z,\underline{h},u,u,y,v,\underline{r},\underline{h},d,y,e,w,r,u,h$

contains r, h, y, r, h, y.

Problem

What is the maximum length of a sequence over n symbols that does not contain a subsequence of type up(l,t) as a subsequence?

Can be infinite: a,

Definition

A sequence is *I*-regular if any *I* consecutive terms in the sequence are pairwise different.

Not *l*-regular (l > 1)

a, *a*, *a*, *a*, *a*, *a*, *a*,

Example of 3-regular

a, g, e, h, q, w, a, h, d, e, n, t

Now the problem:

Problem

Given fixed I, t, what is the maximum length of an I-regular sequence over n symbols that does not contain a subsequence of type up(I, t)?

Answer

Theorem (Klazar 1993, Nivasch 2006)

Given fixed I, t, the maximum length of an I-regular sequence over n symbols that does not contain a subsequence of type up(I, t) is at most

$$c_{l,t}n\cdot 2^{\alpha^{c_{l,t}}(n)}.$$

Theorem (Main Result, Suk 2011)

Every n-vertex simple k-quasi-planar graph has at most $(n \log^2 n) \cdot 2^{\alpha^{c_k}(n)}$ edges.

Proof of main theorem: Suppose *G* is *k*-quasi-planar with *m* edges. Proceed by induction on *n*. **CASE 1.** If there are less than $O(m^2/\log^2 n)$ pairs of edges in *G* that intersect, then use *Bisection Width* and inductive hypothesis.

$$b(G) = \min_{|V_1|, |V_2| \le 2n/3} |E(V_1, V_2)|$$

Theorem (Pach, Shahrokhi, Szegedy 1996)

Let G be a graph on n vertices and m edges. Then

$$b(G) \leq 7\sqrt{cr(G)} + 3\sqrt{mn}$$

Since we assumed $cr(G) \leq O(m^2/\log^2 n)$, we have

$$b(G) \leq O\left(\frac{m}{\log n} + \sqrt{mn}\right)$$

$$b(G) \leq O\left(\frac{m}{\log n} + \sqrt{mn}\right)$$

$$|E(G)| \leq |E_1| + O\left(\frac{m}{\log n} + \sqrt{mn}\right) + |E_2| \leq (n\log^2 n) \cdot 2^{\alpha^{c_k}(n)}$$

Case 2: There are at least $\Omega(m^2/\log^2 n)$ edges that cross. By a simple counting argument, there exists an edge *e* that crosses at least $\Omega(m/\log^2 n)$ edges.

Let E' denote the set of edges that cross e. $|E'| \ge \Omega(m/\log^2 n)$.

 $S_1 =$

$$S_2 =$$

 $S_1 =$

$$S_2 =$$

 $S_1 = 1$

$$S_2 =$$

 $S_1 = 1, 2$

$$S_2 =$$

 $S_1 = 1, 2, 3$

$$S_2 =$$

$$S_1 = 1, 2, 3, 2$$

$$S_2 =$$

$$S_1 = 1, 2, 3, 2, 4$$

$$S_2 =$$

$$S_1 = 1, 2, 3, 2, 4, 4$$

$$S_2 =$$

$$S_2 =$$

$$S_2 =$$

$$S_2 = 7$$

$$S_2 = 7, 5$$

$$S_2 = 7, 5, 5$$

 $S_1 = 1, 2, 3, 2, 4, 4, 3, 6$

 $S_2 = 7, 5, 5, 6$

$$S_2 = 7, 5, 5, 6, 6$$

 $S_1 = 1, 2, 3, 2, 4, 4, 3, 6$

 $S_2 = 7, 5, 5, 6, 6, 7$

 $S_1 = 1, 2, 3, 2, 4, 4, 3, 6$

 $S_2 = 7, 5, 5, 6, 6, 7, 7$

 $S_1 = 1, 2, 3, 2, 4, 4, 3, 6$

 $S_2 = 7, 5, 5, 6, 6, 7, 7, 7$

$$S_1 = 1, 2, 3, 2, 4, 4, 3, 6 \ge \Omega\left(\frac{m}{\log^2 n}\right)$$
$$S_2 = 7, 5, 5, 6, 6, 7, 7, 7 \ge \Omega\left(\frac{m}{\log^2 n}\right)$$

Need to make S_1 or $S_2 (2^{k^2+k})$ -regular. Observation:

 $S_2 =, 1, 1, 1, 1, 1,$ is bad but $S_1 =, 2, 3, 4, 5, 6,$

Theorem (Valtr 1997)

For fixed I and S_1, S_2 defined as above, either S_1 or S_2 (say S_1) has an I-regular subsequence S'_1 of length $\Omega(|S_1|/l^2) = \Omega(|E'|/l^2)$.

Say S_1 has a 2^{k^2+k} -regular subsequence of length $\Omega(|E'|/c_k) \ge \Omega\left(\frac{m}{\log^2 n}\right)$.

Theorem (Valtr 1997)

For fixed I and S_1, S_2 defined as above, either S_1 or S_2 (say S_1) has an I-regular subsequence S'_1 of length $\Omega(|S_1|/l^2) = \Omega(|E'|/l^2)$.

Say S_1 has a 2^{k^2+k} -regular subsequence of length $\Omega(|E'|/c_k) \ge \Omega\left(\frac{m}{\log^2 n}\right)$.

Claim: S'_1 does not contain a subsequence of type $up(2^{k^2+k}, 2^k)$.

$$\Omega\left(\frac{m}{\log^2 n}\right) \le |S_1'| \stackrel{Klazar}{\le} c_k n 2^{\alpha^{c_k}(n)}$$

e

1) Maximum unit distance among *n* points in convex position. Conjecture O(n) (Erdős). Best known $O(n \log n)$ by Füredi.

2) Maximum number of edges in a simple topological graph with no k pairwise disjoint edges. Conjecture O(n). Best known $O(n \log^{5k} n)$ by Pach and Tóth.

Thank you!