On the Erdős-Szekeres convex polygon problem

Andrew Suk

November 6, 2016

Origins of Ramsey theory

"A combinatorial problem in geometry," by Paul Erdős and George Szekeres (1935)

Erdős' first combinatorial paper, previous 9 were in number theory.

Origins of Ramsey theory

"On a problem of formal logic," by Frank Ramsey (1930)

Informal definition: Every sufficiently large system contains a large well-organized subsystem. In other words, complete disorder is impossible.

Formal definition: For any integers $k \ge 1$, $s, n \ge k$, there is a minimum $R_k(s, n) = N$, such that for every red/blue coloring of the k-tuples of $\{1, 2, \ldots, N\}$,

- s integers for which every k-tuple is red, or
- $oldsymbol{0}$ *n* integers for which every *k*-tuple is blue.

Formal definition: For any integers $k \ge 1$, $s, n \ge k$, there is a minimum $R_k(s, n) = N$, such that for every red/blue coloring of the k-tuples of $\{1, 2, ..., N\}$,

- ① s integers for which every k-tuple is red, or
- $oldsymbol{0}{2}$ n integers for which every k-tuple is blue.

Formal definition: For any integers $k \ge 1$, $s, n \ge k$, there is a minimum $R_k(s, n) = N$, such that for every red/blue coloring of the k-tuples of $\{1, 2, ..., N\}$,

- $oldsymbol{0}$ *n* integers for which every k-tuple is blue.

Formal definition: For any integers $k \ge 1$, $s, n \ge k$, there is a minimum $R_k(s, n) = N$, such that for every red/blue coloring of the k-tuples of $\{1, 2, \ldots, N\}$,

- s integers for which every k-tuple is red, or
- $oldsymbol{0}$ *n* integers for which every *k*-tuple is blue.

Formal definition: For any integers $k \ge 1$, $s, n \ge k$, there is a minimum $R_k(s, n) = N$, such that for every red/blue coloring of the k-tuples of $\{1, 2, ..., N\}$,

- \odot s integers for which every k-tuple is red, or
- ② *n* integers for which every k-tuple is blue.

Formal definition: For any integers $k \ge 1$, $s, n \ge k$, there is a minimum $R_k(s, n) = N$, such that for every red/blue coloring of the k-tuples of $\{1, 2, \ldots, N\}$,

- s integers for which every k-tuple is red, or
- ② n integers for which every k-tuple is blue.

Formal definition: For any integers $k \ge 1$, $s, n \ge k$, there is a minimum $R_k(s, n) = N$, such that for every red/blue coloring of the k-tuples of $\{1, 2, \ldots, N\}$,

- ① s integers for which every k-tuple is red, or
- \bigcirc *n* integers for which every *k*-tuple is blue.

$$R_k(s, n) =$$
Ramsey numbers

Original paper, 1935

A Combinatorial Problem in Geometry

by

P. Erdös and G. Szekeres Manchester

Introduction.

Our present problem has been suggested by Miss Esther Klein in connection with the following proposition.

From 5 points of the plane of which no three lie on the same straight line it is always possible to select 4 points determining a convex quadrilateral.

We present E. Klein's proof here because later on we are going to make use of it. If the least convex polygon which ecloses the points is a quadrilateral or a pentagon the theorem is trivial. Let therefore the enclosing polygon be a triangle ABC. Then the two remaining points D and E are inside ABC. Two of the given points (say A and C) must lie on the same side of the connecting straight line \overline{DE} . Then it is clear that AEDC is a convex quadrilateral.

1) Rediscovered Ramsey's theorem, 2) Monotone Subsequence theorem, 3) Convex polygon theorem.

Problem (Esther Klein 1933)

Given an integer n, is there a minimal integer ES(n), such that any set of at least ES(n) points in the plane in general position, contains n members in convex position?

Problem (Esther Klein 1933)

Given an integer n, is there a minimal integer ES(n), such that any set of at least ES(n) points in the plane in general position, contains n members in convex position?

Theorem (Erdős-Szekeres, 1935)

For every $n \ge 3$, ES(n) exists.

Theorem (Erdős-Szekeres, 1935)

Theorem (Erdős-Szekeres, 1935)

Theorem (Erdős-Szekeres, 1935)

Theorem (Erdős-Szekeres, 1935)

Theorem (Erdős-Szekeres, 1935)

Theorem (Erdős-Szekeres, 1935)

Theorem (Erdős-Szekeres, 1935)

Theorem (Erdős-Szekeres, 1935)

Theorem (Erdős-Rado, 1952)

$$ES(n) \leq R_4(5,n) < 2^{2^{cn^4}}.$$

Theorem (Colon-Fox-Sudakov, 2008)

$$ES(n) \le R_4(5, n) < 2^{2^{cn^2 \log n}}.$$

Theorem (Mubayi-S., 2015)

$$R_4(5,n) > 2^{n^{c \log \log n}}.$$

Second Proof

Theorem (Erdős-Szekeres 1935, 1960)

$$2^{n-2} + 1 \le ES(n) \le {2n-4 \choose n-2} + 1 = O(4^n/\sqrt{n}).$$

Conjecture: $ES(n) = 2^{n-2} + 1$, $n \ge 3$.

Exact values

Conjecture:
$$ES(n) = 2^{n-2} + 1$$

Trivial: ES(3) = 3

Klein (1933): ES(4) = 5

Makai and Turán (1935): ES(5) = 9

Szekeres-Peters (2006): ES(6) = 17.

For $n \ge 7$, ES(n) is still unknown.

Towards the conjecture $ES(n) = 2^{n-2} + 1$

1935, Erdős-Szekeres:
$$\binom{2n-4}{n-2} + 1$$

1998, Chung-Graham:
$$\binom{2n-4}{n-2}$$

1998, Kleitman-Pachter:
$$\binom{2n-4}{n-2} - 2n + 7$$

1998, Tóth-Valtr:
$$\binom{2n-5}{n-2} + 2 \sim \frac{1}{2} \binom{2n-4}{n-2}$$

2005, Tóth-Valtr:
$$\binom{2n-5}{n-2} + 1$$

2015, Norin-Yuditsky and Mojarrad-Vlachos:
$$\lim \sup_{n\to\infty} \frac{ES(n)}{\binom{2n-4}{n-2}} \le \frac{7}{16}$$
.

$$2^{n-2} + 1 \le ES(n) \le 4^{n-o(n)}$$
.

Inspired many variants: Higher-dimensions, cyclic polytopes, lines, convex bodies, etc.

The original upper bound

$$ES(n) \leq \binom{2n-4}{n-2} + 1.$$

Theorem (Cups-Caps Theorem)

Let $f(k,\ell)$ be the smallest integer N such that any N-element point set in the plane in general position contains either a k-cup or an ℓ -cap. Then

$$f(k,\ell) = \binom{k+\ell-4}{k-2} + 1.$$

$$f(k,\ell) \ge f(k-1,\ell) + f(k,\ell-1) - 1$$

$$f(k,l-1)-1$$

$$f(k-1,l)-1$$

$$f(k,\ell) \ge f(k-1,\ell) + f(k,\ell-1) - 1$$

$$f(k,\ell) \ge f(k-1,\ell) + f(k,\ell-1) - 1$$

$$f(k,l-1)-1$$

$$f(k-1,l)-1$$

"typical" convex *n*-gon

Union of an (n/2)-cup and an (n/2)-cap. Note that: $f(n/2, n/2) = 2^{n-o(n)}$

Question: Can we (somehow) combine the cups and caps from the cup-cap theorem?

Theorem (S. 2016)

For $n \ge n_0$, where n_0 is a large absolute constant

$$ES(n) \leq 2^{n+2n^{3/4}}.$$

Conjecture: $ES(n) = 2^{n-2} + 1$

Erdős offered \$500 for a proof (Graham offered \$1000).

$$f(k,\ell) \ge f(k-1,\ell) + f(k,\ell-1) - 1$$

$$f(k,l-1)-1$$

$$f(k-1,l)-1$$

$$f(k,\ell) \ge f(k-1,\ell) + f(k,\ell-1) - 1$$

mutually avoiding sets

$\mathsf{Theorem}\,\, ig(\mathsf{Aronov} ext{-}\mathsf{Erd} ilde{\mathsf{o}}\mathsf{s} ext{-}\mathsf{Goddard} ext{-}\mathsf{Kleitman} ext{-}\mathsf{Klugerman} ext{-}\mathsf{Pach} ext{-}\mathsf{Schulman}\,\,\,1991ig)$

Let P be an N-element planar point set in general position. Then there are subsets $A, B \subset P$ such that $|A|, |B| \ge \sqrt{N/12}$ and A and B are mutually avoiding.

mutually avoiding sets

Theorem (Aronov-Erdős-Goddard-Kleitman-Klugerman-Pach-Schulman 1991)

Let P be an N-element planar point set in general position. Then there are subsets $A, B \subset P$ such that $|A|, |B| \ge \sqrt{N/12}$ and A and B are mutually avoiding.

Theorem (Aronov-Erdős-Goddard-Kleitman-Klugerman-Pach-Schulman 1991)

$\mathsf{Theorem}\,\, ig(\mathsf{Aronov} ext{-}\mathsf{Erd} ilde{\mathsf{o}}\mathsf{s} ext{-}\mathsf{Goddard} ext{-}\mathsf{Kleitman} ext{-}\mathsf{Klugerman} ext{-}\mathsf{Pach} ext{-}\mathsf{Schulman}\,\,\,1991ig)$

Theorem (Aronov-Erdős-Goddard-Kleitman-Klugerman-Pach-Schulman 1991)

$$\sqrt{N} = f(n, n/2) \approx (2.6)^n \Longrightarrow N \approx (6.75)^n.$$

$\mathsf{Theorem}\,\,(\mathsf{Aronov} ext{-}\mathsf{Erd} ilde{\mathsf{o}}\mathsf{s} ext{-}\mathsf{Goddard} ext{-}\mathsf{Kleitman} ext{-}\mathsf{Klugerman} ext{-}\mathsf{Pach} ext{-}\mathsf{Schulman}\,\,1991)$

Let P be an N-element planar point set in general position. Then there are subsets $A, B \subset P$ such that $|A|, |B| \ge \sqrt{N/12}$ and A and B are mutually avoiding.

Theorem (Valtr 1994)

Any point set P with |P| = N and with ratio $c\sqrt{N}$, contains no pair of mutually avoiding sets of size more than $c'\sqrt{N}$.

- • •
- • •
- • • •
-

Grid-like point sets contain large cups and caps

Theorem (Alon, Katchalski, Pulleyblank 1989, Valtr 1994)

Any point set P with |P| = N and with ratio $c\sqrt{N}$, contains $\Omega(N^{1/3})$ points in convex position.

```
. . . . .
```

Theorem (S. 2016)

For $n \ge n_0$, where n_0 is a large absolute constant

$$ES(n) \leq 2^{n+2n^{3/4}}.$$

Basic Idea: Grid like \Rightarrow large cups and caps Not grid like \Rightarrow large mutually avoiding sets.

Theorem (S. 2016)

For $n \ge n_0$, where n_0 is a large absolute constant

$$ES(n)=2^{n+o(n)}.$$

For $|P| \ge 16^k$, there is a k-element subset $X \subset P$ such that X is either a k-cup or a k-cap, and the regions T_1, \ldots, T_{k-1} from the support of X satisfies $|T_i \cap P| \ge \frac{|P|}{2^{40k}}$.

For $|P| \ge 16^k$, there is a k-element subset $X \subset P$ such that X is either a k-cup or a k-cap, and the regions T_1, \ldots, T_{k-1} from the support of X satisfies $|T_i \cap P| \ge \frac{|P|}{240k}$.

For $|P| \ge 16^k$, there is a k-element subset $X \subset P$ such that X is either a k-cup or a k-cap, and the regions T_1, \ldots, T_{k-1} from the support of X satisfies $|T_i \cap P| \ge \frac{|P|}{2^{40k}}$.

For $|P| \ge 16^k$, there is a k-element subset $X \subset P$ such that X is either a k-cup or a k-cap, and the regions T_1, \ldots, T_{k-1} from the support of X satisfies $|T_i \cap P| \ge \frac{|P|}{2^{40k}}$.

Proof. $|P| = 2^{n+2n^{3/4}}$. $k = n^{2/3}$, $|T_i \cap P| \ge 2^{n+2n^{3/4}-40n^{2/3}}$

For $|P| \ge 16^k$, there is a k-element subset $X \subset P$ such that X is either a k-cup or a k-cap, and the regions T_1, \ldots, T_{k-1} from the support of X satisfies $|T_i \cap P| \ge \frac{|P|}{2^{40k}}$.

Proof. $|P| = 2^{n+2n^{3/4}}$. $k = n^{2/3}$, $|T_i \cap P| \ge 2^{n+2n^{3/4}-40n^{2/3}}$

Define partial order of $P_i = T_i \cap P$, where $p \prec q$ iff $q \in conv(p \cup x_{i-1}x_{i+2})$

Define partial order of $P_i = T_i \cap P$, where $p \prec q$ iff $q \in conv(p \cup x_{i-1}x_{i+2})$

$$N=2^{n+2n^{3/4}}$$
, $k=n^{2/3}$. Set $\alpha=n^{-1/4}$.

- **1** Antichain size $\left(\frac{N}{2^{40k}}\right)^{\alpha} = 2^{n^{3/4} + 2n^{1/2} 40n^{5/12}}$ **2** Chain size $\left(\frac{N}{2^{40k}}\right)^{1-\alpha} = 2^{n+n^{3/4} 40n^{2/3} 2n^{1/2}}$

Andrew Suk

$$N = 2^{n+2n^{3/4}}$$
, $k = n^{2/3}$. Set $\alpha = n^{-1/4}$.

- **1** Antichain size $\left(\frac{N}{2^{40k}}\right)^{\alpha} = 2^{n^{3/4} + 2n^{1/2} 40n^{5/12}}$ **2** Chain size $\left(\frac{N}{2^{40k}}\right)^{1-\alpha} = 2^{n+n^{3/4} 40n^{2/3} 2n^{1/2}}$

$$N = 2^{n+2n^{3/4}}$$
, $k = n^{2/3}$. Set $\alpha = n^{-1/4}$.

- **1** Antichain size $\left(\frac{N}{2^{40k}}\right)^{\alpha} = 2^{n^{3/4} + 2n^{1/2} 40n^{5/12}}$ **2** Chain size $\left(\frac{N}{2^{40k}}\right)^{1-\alpha} = 2^{n+n^{3/4} 40n^{2/3} 2n^{1/2}}$

$$N=2^{n+2n^{3/4}}$$
, $k=n^{2/3}$. Set $\alpha=n^{-1/4}$.

- **1** Antichain size $\left(\frac{N}{2^{40k}}\right)^{\alpha} = 2^{n^{3/4} + 2n^{1/2} 40n^{5/12}}$ **2** Chain size $\left(\frac{N}{2^{40k}}\right)^{1-\alpha} = 2^{n+n^{3/4} 40n^{2/3} 2n^{1/2}}$

 $k = n^{2/3}$ regions.

By Pigeonhole:

- $\bigcirc \hspace{0.5cm} \frac{\sqrt{k}}{2} \text{ nonadjacent regions have antichains of size } \left(\frac{N}{2^{40k}} \right)^{\alpha}.$
- ② \sqrt{k} consecutive regions have chains of size $(\frac{N}{2^{40k}})^{1-\alpha}$

1 Antichain size $\left(\frac{N}{2^{40k}}\right)^{\alpha} = 2^{n^{3/4} + 2n^{1/2} - 40n^{5/12}} \ge f(n, 2n^{2/3})$

1 Antichain size
$$\left(\frac{N}{2^{40k}}\right)^{\alpha} = 2^{n^{3/4} + 2n^{1/2} - 40n^{5/12}} \ge f(n, 2n^{2/3})$$

Union of all small caps is a cap (done).

Union of all small caps is a cap (done).

Case 2: $\sqrt{k} = n^{1/3}$ of the P_i -s are consecutive chains.

② Chain of size
$$\left(\frac{N}{2^{40k}}\right)^{1-\alpha} = 2^{n+n^{3/4}-40n^{2/3}-2n^{1/2}}$$

Case 2: $\sqrt{k} = n^{1/3}$ of the P_i -s are consecutive chains.

Case 2: $\sqrt{k} = n^{1/3}$ of the P_i -s are consecutive chains.

Case 2: $\sqrt{k} = n^{1/3}$ of the P_i -s are consecutive chains.

Case 2: $\sqrt{k} = n^{1/3}$ of the P_i -s are consecutive chains.

Case 2: $\sqrt{k} = n^{1/3}$ of the P_i -s are consecutive chains.

Case 2: $\sqrt{k} = n^{1/3}$ of the P_i -s are consecutive chains.

 $\sqrt{k} = n^{1/3}$ of the P_i -s are consecutive chains.

 $\sqrt{k} = n^{1/3}$ of the P_i -s are consecutive chains.

 $\sqrt{k} = n^{1/3}$ of the P_i -s are consecutive chains.

 $\sqrt{k} = n^{1/3}$ of the P_i -s are consecutive chains.

 $\sqrt{k} = n^{1/3}$ of the P_i -s are consecutive chains.

 $\sqrt{k} = n^{1/3}$ of the P_i -s are consecutive chains.

 $\sqrt{k} = n^{1/3}$ of the P_i -s are consecutive chains.

 $\sqrt{k} = n^{1/3}$ of the P_i -s are consecutive chains.

 $\sqrt{k} = n^{1/3}$ of the P_i -s are consecutive chains.

 $\sqrt{k} = n^{1/3}$ of the P_i -s are consecutive chains.

 $\sqrt{k} = n^{1/3}$ of the P_i -s are consecutive chains.

② Chain of size $\left(\frac{N}{2^{40k}}\right)^{1-\alpha} = 2^{n+n^{3/4}-40n^{2/3}-2n^{1/2}} \ge f(in^{2/3}, n-in^{2/3}+n^{2/3})$

 $\sqrt{k} = n^{1/3}$ of the P_i -s are consecutive chains.

② Chain of size $\left(\frac{N}{2^{40k}}\right)^{1-\alpha} = 2^{n+n^{3/4}-40n^{2/3}-2n^{1/2}} \ge f(in^{2/3}, n-in^{2/3}+n^{2/3})$

 $\sqrt{k} = n^{1/3}$ of the P_i -s are consecutive chains.

 $\sqrt{k} = n^{1/3}$ of the P_i -s are consecutive chains.

 $\sqrt{k} = n^{1/3}$ of the P_i -s are consecutive chains.

 $\sqrt{k} = n^{1/3}$ of the P_i -s are consecutive chains.

 $\sqrt{k} = n^{1/3}$ of the P_i -s are consecutive chains.

 $\sqrt{k} = n^{1/3}$ of the P_i -s are consecutive chains.

 $\sqrt{k} = n^{1/3}$ of the P_i -s are consecutive chains.

 $\sqrt{k} = n^{1/3}$ of the P_i -s are consecutive chains.

 $\sqrt{k} = n^{1/3}$ of the P_i -s are consecutive chains.

② Chain of size $\left(\frac{N}{2^{40k}}\right)^{1-\alpha} = 2^{n+n^{3/4}-40n^{2/3}-2n^{1/2}} \ge f(in^{2/3}, n-in^{2/3}+n^{2/3})$

 $\sqrt{k} = n^{1/3}$ of the P_i -s are consecutive chains.

② Chain of size $\left(\frac{N}{2^{40k}}\right)^{1-\alpha} = 2^{n+n^{3/4}-40n^{2/3}-2n^{1/2}} \ge f(in^{2/3}, n-in^{2/3}+n^{2/3})$

Higher dimensions

 $ES_d(n)$ =smallest integer such that any set of $ES_d(n)$ points in \mathbb{R}^d in general position contains n members in convex position.

Theorem (Károlyi 2001)

$$ES_d(n) \le ES_{d-1}(n-1) + 1.$$

$$ES_d(n) \le ES(n-d+2) + d - 2 \le 2^{n+o(n)}$$
.

Conjecture (Füredi)

$$ES_3(n)=2^{\Theta(\sqrt{n})}.$$

$$ES_d(n) = 2^{\Theta(n^{1/(d-1)})}.$$

Higher dimensions

Conjecture (Füredi)

$$ES_3(n)=2^{\Theta(\sqrt{n})}.$$

$$ES_d(n) = 2^{\Theta(n^{1/(d-1)})}.$$

Theorem (Károlyi-Valtr 2003)

$$ES_d(n) \geq 2^{cn^{1/(d-1)}}.$$

$$ES_d(n) \leq 2^{n+o(n)}$$
.

Thank you!