# On the Erdős-Szekeres convex polygon problem

Andrew Suk

May 25, 2016

#### Problem (Esther Klein 1933)

Given an integer n, is there a minimal integer ES(n), such that any set of at least ES(n) points in the plane in general position, contains n members in convex position?



#### Problem (Esther Klein 1933)

Given an integer n, is there a minimal integer ES(n), such that any set of at least ES(n) points in the plane in general position, contains n members in convex position?



#### Theorem (Erdős-Szekeres 1935, 1960)

$$2^{n-2}+1 \leq ES(n) \leq {2n-4 \choose n-2}+1 = O(4^n/\sqrt{n}).$$

**Conjecture:**  $ES(n) = 2^{n-2} + 1$ 

### Exact values

**Conjecture:**  $ES(n) = 2^{n-2} + 1$ 

Klein (1933): ES(4) = 5

Makai (1935): ES(5) = 9

Szekeres-Peters (2006): ES(6) = 17.

For  $n \ge 7$ , ES(n) is still unknown.

# Towards the conjecture $ES(n) = 2^{n-2} + 1$

1935, Erdős-Szekeres: 
$$\binom{2n-4}{n-2} + 1$$

1998, Chung-Graham: 
$$\binom{2n-4}{n-2}$$

1998, Kleitman-Pachter: 
$$\binom{2n-4}{n-2} - 2n + 7$$

1998, Tóth-Valtr: 
$$\binom{2n-5}{n-2} + 2$$

2005, Tóth-Valtr: 
$$\binom{2n-5}{n-2} + 1$$

2015, Vlachos: 
$$\lim \sup_{n\to\infty} \frac{ES(n)}{\binom{2n-5}{n-2}} \le \frac{29}{32}$$
.

2015, Norin-Yuditsky and Mojarrad-Vlachos: 
$$\limsup_{n\to\infty}\frac{ES(n)}{\binom{2n-5}{n-2}}\leq \frac{7}{8}$$
.

$$=4^{n-o(n)}$$
.

## The original upper bound

$$ES(n) \leq \binom{2n-4}{n-2} + 1.$$

#### Theorem (Cups-Caps Theorem)

Let  $f(k,\ell)$  be the smallest integer N such that any N-element point set in the plane in general position contains either a k-cup or an  $\ell$ -cap. Then

$$f(k,\ell) = \binom{k+\ell-4}{k-2} + 1.$$





## Cups-caps construction

$$f(k,\ell) \geq f(k-1,\ell) + f(k,\ell-1) - 1$$

$$f(k,l-1)-1$$

$$f(k-1,l)-1$$

## Cups-caps construction

$$f(k,\ell) \ge f(k-1,\ell) + f(k,\ell-1) - 1$$



## Cups-caps construction

$$f(k,\ell) \ge f(k-1,\ell) + f(k,\ell-1) - 1$$

$$f(k,l-1)-1$$

$$f(k-1,l)-1$$

## "typical" convex *n*-gon



Union of an (n/2)-cup and an (n/2)-cap. Note that:  $f(n/2, n/2) = 2^{n-o(n)}$ 

**Question:** Can we (somehow) combine the cups and caps from the cup-cap theorem?

### Theorem (S. 2016)

For  $n \ge n_0$ , where  $n_0$  is a large absolute constant

$$ES(n) \leq 2^{n+2n^{3/4}}.$$

**Conjecture:**  $ES(n) = 2^{n-2} + 1$ 

Erdős offered \$500 for a proof (Graham offered \$1000).

#### Theorem (Aronov-Erdős-Goddard-Kleitman-Klugerman-Pach-Schulman 1991)

#### Theorem (Aronov-Erdős-Goddard-Kleitman-Klugerman-Pach-Schulman 1991)



#### Theorem (Aronov-Erdős-Goddard-Kleitman-Klugerman-Pach-Schulman 1991)

#### $\mathsf{Theorem}\,\, ig(\mathsf{Aronov} ext{-}\mathsf{Erd} ilde{\mathsf{o}}\mathsf{s} ext{-}\mathsf{Goddard} ext{-}\mathsf{Kleitman} ext{-}\mathsf{Klugerman} ext{-}\mathsf{Pach} ext{-}\mathsf{Schulman}\,\,\,1991ig)$



#### Theorem (Aronov-Erdős-Goddard-Kleitman-Klugerman-Pach-Schulman 1991)

$$f(n,n/2)$$
 $f(n,n/2)$ 
 $f(n/2,n)$ 
 $\sqrt{N} = f(n,n/2) \approx (2.6)^n \Longrightarrow N \approx (6.75)^n$ .

#### Theorem (Aronov-Erdős-Goddard-Kleitman-Klugerman-Pach-Schulman 1991)

Let P be an N-element planar point set in general position. Then there are subsets  $A, B \subset P$  such that  $|A|, |B| \ge \sqrt{N}$  and A and B are mutually avoiding.

#### Theorem (Valtr 1994)

Any point set P with |P| = N and with ratio  $c\sqrt{N}$ , contains no pair of mutually avoiding sets of size more than  $c'\sqrt{N}$ .

- • •
- • • •
- • • •
- . . . . .

## Grid-like point sets contain large cups and caps

#### Theorem (Valtr 1994)

Any point set P with |P| = N and with ratio  $c\sqrt{N}$ , contains  $\Omega(N^{1/3})$  points in convex position.

**Basic Idea**: Grid like  $\Rightarrow$  large cups and caps Not grid like  $\Rightarrow$  large mutually avoiding sets.

- • •
- • • •
- . . . . .
- . . . . .

### Theorem (S. 2016)

For  $n \ge n_0$ , where  $n_0$  is a large absolute constant

$$ES(n)=2^{n+o(n)}.$$

For  $|P| \ge 16^k$ , there is a k-element subset  $X \subset P$  such that X is either a k-cup or a k-cap, and the regions  $T_1, \ldots, T_{k-1}$  from the support of X satisfies  $|T_i \cap P| \ge \frac{|P|}{2^{40k}}$ .

For  $|P| \ge 16^k$ , there is a k-element subset  $X \subset P$  such that X is either a k-cup or a k-cap, and the regions  $T_1, \ldots, T_{k-1}$  from the support of X satisfies  $|T_i \cap P| \ge \frac{|P|}{240k}$ .



For  $|P| \ge 16^k$ , there is a k-element subset  $X \subset P$  such that X is either a k-cup or a k-cap, and the regions  $T_1, \ldots, T_{k-1}$  from the support of X satisfies  $|T_i \cap P| \ge \frac{|P|}{2^{40k}}$ .



For  $|P| \ge 16^k$ , there is a k-element subset  $X \subset P$  such that X is either a k-cup or a k-cap, and the regions  $T_1, \ldots, T_{k-1}$  from the support of X satisfies  $|T_i \cap P| \ge \frac{|P|}{2^{40k}}$ .

**Proof.**  $|P| = 2^{n+2n^{3/4}}$ .  $k = n^{2/3}$ ,  $|T_i \cap P| \ge 2^{n+2n^{3/4}-40n^{2/3}}$ 



For  $|P| \ge 16^k$ , there is a k-element subset  $X \subset P$  such that X is either a k-cup or a k-cap, and the regions  $T_1, \ldots, T_{k-1}$  from the support of X satisfies  $|T_i \cap P| \ge \frac{|P|}{2^{40k}}$ .

**Proof.**  $|P| = 2^{n+2n^{3/4}}$ .  $k = n^{2/3}$ ,  $|T_i \cap P| \ge 2^{n+2n^{3/4}-40n^{2/3}}$ 



Define partial order of  $P_i = T_i \cap P$ , where  $p \prec q$  iff  $q \in conv(p \cup x_{i-1}x_{i+2})$ 



Define partial order of  $P_i = T_i \cap P$ , where  $p \prec q$  iff  $q \in conv(p \cup x_{i-1}x_{i+2})$ 







$$N=2^{n+2n^{3/4}}$$
,  $k=n^{2/3}$ . Set  $\alpha=n^{-1/4}$ .

Dilworth's Theorem: Each Pi contains either

- **1** Antichain size  $\left(\frac{N}{2^{40k}}\right)^{\alpha} = 2^{n^{3/4} + 2n^{1/2} 40n^{5/12}}$  **2** Chain size  $\left(\frac{N}{2^{40k}}\right)^{1-\alpha} = 2^{n+n^{3/4} 40n^{2/3} 2n^{1/2}}$









**1** Antichain size 
$$\left(\frac{N}{2^{40k}}\right)^{\alpha} = 2^{n^{3/4} + 2n^{1/2} - 40n^{5/12}} \ge f(n, 2n^{2/3})$$



Union of all small caps is a cap (done).

## Many large mutually avoiding sets

Case 2:  $\sqrt{k} = n^{1/3}$  of the  $P_i$ -s are consecutive chains.

② Chain of size 
$$\left(\frac{N}{2^{40k}}\right)^{1-\alpha} = 2^{n+n^{3/4}-40n^{2/3}-2n^{1/2}}$$



# Many large mutually avoiding sets

Case 2:  $\sqrt{k} = n^{1/3}$  of the  $P_i$ -s are consecutive chains.

② Chain of size  $\left(\frac{N}{2^{40k}}\right)^{1-\alpha} = 2^{n+n^{3/4}-40n^{2/3}-2n^{1/2}}$ 



Case 2:  $\sqrt{k} = n^{1/3}$  of the  $P_i$ -s are consecutive chains.

② Chain of size  $\left(\frac{N}{2^{40k}}\right)^{1-\alpha} = 2^{n+n^{3/4}-40n^{2/3}-2n^{1/2}}$ 



Case 2:  $\sqrt{k} = n^{1/3}$  of the  $P_i$ -s are consecutive chains.

② Chain of size  $\left(\frac{N}{2^{40k}}\right)^{1-\alpha} = 2^{n+n^{3/4}-40n^{2/3}-2n^{1/2}}$ 



 $\sqrt{k} = n^{1/3}$  of the  $P_i$ -s are consecutive chains.

② Chain of size 
$$\left(\frac{N}{2^{40k}}\right)^{1-\alpha} = 2^{n+n^{3/4}-40n^{2/3}-2n^{1/2}} \ge f(n, 2n^{2/3})$$



Case 2:  $\sqrt{k} = n^{1/3}$  chains of size  $2^{n+n^{3/4}-40n^{2/3}-2n^{1/2}}$ 

$$f(in^{2/3}, n - in^{2/3} + n^{2/3}) = \binom{n + n^{2/3} - 4}{in^{2/3} - 2} + 1 \le 2^{n + 2n^{2/3}}$$



# Higher dimensions

 $ES_d(n)$  =smallest integer such that any set of  $ES_d(n)$  points in  $\mathbb{R}^d$  in general position contains n members in convex position.

### Theorem (Károlyi 2001)

$$ES_d(n) \leq ES_{d-1}(n-1) + 1.$$

$$ES_d(n) \le ES(n-d+2) + d - 2 \le 2^{n+o(n)}$$
.

### Conjecture

Füredi: 
$$ES_3(n) = 2^{c\sqrt{n}}$$
.

$$ES_d(n) = 2^{c_d n^{1/(d-1)}}$$
.

# Higher dimensions

#### Conjecture

Füredi: 
$$ES_3(n) = 2^{c\sqrt{n}}$$
.

(???) 
$$ES_d(n) = 2^{c_d n^{1/(d-1)}}$$
.

## Theorem (Károlyi-Valtr 2003)

$$ES_d(n) \geq 2^{cn^{1/(d-1)}}.$$

$$ES_d(n) \leq 2^{n+o(n)}$$
.

## Mutually avoiding sets in $\mathbb{R}^d$

#### Theorem (Aronov-Erdős-Goddard-Kleitman-Klugerman-Pach-Schulman 1991)

Let P be an N-element point set in general position in  $\mathbb{R}^d$ . Then there are subsets  $A,B\subset P$  such that  $|A|,|B|\geq N^{\frac{1}{d^2-d+1}}$  and A and B are mutually avoiding.

# Mutually avoiding sets in $\mathbb{R}^d$

#### $\mathsf{Theorem}\,\, ig(\mathsf{Aronov} ext{-}\mathsf{Erd} ilde{\mathsf{o}}\mathsf{s} ext{-}\mathsf{Goddard} ext{-}\mathsf{Kleitman} ext{-}\mathsf{Klugerman} ext{-}\mathsf{Pach} ext{-}\mathsf{Schulman}\,\,\,1991ig)$

Let P be an N-element point set in general position in  $\mathbb{R}^d$ ,  $d \geq 3$ . Then there are subsets  $A, B \subset P$  such that  $|A|, |B| \geq N^{\frac{1}{d^2-d+1}}$  and A and B are mutually avoiding.

### Theorem (Valtr 1994)

There is an N-element point set P in  $\mathbb{R}^d$  in general position that does not contain a pair of mutually avoiding sets of size more than  $cN^{1-\frac{1}{d}}$ .



## Back in the plane

#### Theorem (Aronov-Erdős-Goddard-Kleitman-Klugerman-Pach-Schulman 1991)

Every complete n-vertex geometric graph contains  $\sqrt{n}$  pairwise crossing edges.



#### Conjecture

Every complete n-vertex geometric graph contains  $n^{1-\epsilon}$  pairwise crossing edges.

# Ramsey approach

### Conjecture

Füredi:  $ES_3(n) = 2^{c\sqrt{n}}$ . (???)  $ES_d(n) = 2^{c_d n^{1/(d-1)}}$ .

 $V = \{N \text{ points in } \mathbb{R}^d \text{ in general position}\}\$  $E = \{(d+2)\text{-tuples NOT in convex position}\}.$ 

### Theorem (Motzkin 1963)

Any set of d + 3 vertices (points) in H induces 0,2,4 hyperedges.

 $r_k(k+1,t;n) = \text{smallest integer } N \text{ such that every } N \text{-vertex } k \text{-uniform hypergraph } H \text{ contains either } k+1 \text{ vertices with } t \text{ edges, or an independent set of size } n.$ 

$$ES_d(n) \leq r_{d+2}(d+3,5;n).$$

 $r_k(k+1,t;n) = \text{smallest integer } N \text{ such that every } N \text{-vertex } k \text{-uniform hypergraph } H \text{ contains either } k+1 \text{ vertices with } t \text{ edges, or an independent set of size } n.$ 

### Conjecture (Erdős-Hajnal 1964)

$$r_k(k+1,5;n) = \text{twr}_4(cn) = 2^{2^{2^{cn}}}.$$

$$r_k(k+1,t;n) = \operatorname{twr}_{t-1}(cn)$$

## Ramsey approach

Not a good approach:  $ES_d(n) \le r_{d+2}(d+3,5;n)$ .

#### Theorem (Mubayi-S. 2016)

For  $k \ge t + 2$ 

$$r_k(k+1,t;n) = \operatorname{twr}_{t-1}(n^{k-t+1+o(1)})$$

 $r_k^*(n) = \text{smallest integer } N \text{ such that every } N \text{-vertex } k \text{-uniform}$  hypergraph H with the property that every k+1 vertices induces 0,2,4 edges, contains an independent set of size n.

$$ES_d(n) \le r_{d+2}^*(n) \le r_{d+2}(d+3,5;n).$$

Not much is known about  $r_k^*(n)$ .

Thank you!