Unavoidable patterns in complete simple topological graphs

Andrew Suk (UC San Diego)

April 26, 2022
$V=$ points in the plane.
$E=$ curves connecting the corresponding points (vertices).

Quasi-planar graphs

Theorem (Euler)

Every n-vertex topological graph with no crossing edges has at most $3 n-6$ edges.

Quasi-planar graphs

Theorem (Euler)

Every n-vertex topological graph with no crossing edges has at most $3 n-6$ edges.

A topological graph is called k-quasi-planar, if there are no k pairwise crossing edges.

Conjecture

Every n-vertex k-quasi-planar graph has at most $O_{k}(n)$ edges.

Quasi-planar graphs

Theorem (Euler)

Every n-vertex topological graph with no crossing edges has at most $3 n-6$ edges.

A topological graph is called k-quasi-planar, if there are no k pairwise crossing edges.

Conjecture

Every n-vertex k-quasi-planar graph has at most $O_{k}(n)$ edges.

- $k=3$, Pach-Radoicic-Toth 2003, Ackerman-Tardos 2007 (Agarwal-Aronov-Pach-Pollack-Sharir 1997).

Quasi-planar graphs

Theorem (Euler)

Every n-vertex topological graph with no crossing edges has at most $3 n-6$ edges.

A topological graph is called k-quasi-planar, if there are no k pairwise crossing edges.

Conjecture

Every n-vertex k-quasi-planar graph has at most $O_{k}(n)$ edges.

- $k=3$, Pach-Radoicic-Toth 2003, Ackerman-Tardos 2007 (Agarwal-Aronov-Pach-Pollack-Sharir 1997).
- $k=4$, Ackerman 2009.

Quasi-planar graphs

Theorem (Euler)

Every n-vertex topological graph with no crossing edges has at most $3 n-6$ edges.

A topological graph is called k-quasi-planar, if there are no k pairwise crossing edges.

Conjecture

Every n-vertex k-quasi-planar graph has at most $O_{k}(n)$ edges.

- $k=3$, Pach-Radoicic-Toth 2003, Ackerman-Tardos 2007 (Agarwal-Aronov-Pach-Pollack-Sharir 1997).
- $k=4$, Ackerman 2009.
- $k \geq 5, n\left(\frac{c \log n}{\log k}\right)^{2 \log k-4}$, Fox-Pach-S. 2022.

Quasi-planar graphs

Conjecture

Every n-vertex k-quasi-planar graph has at most $O_{k}(n)$ edges.

Quasi-planar graphs

Conjecture

Every n-vertex k-quasi-planar graph has at most $O_{k}(n)$ edges.

- Straight-line edges, $O(n \log n)$ Valtr 1997.
- x-monotone, $O(n \log n)$ Fox-Pach-S. 2014.
- t-intersecting, $O(n \log n)$, Rok-Walczak 2019.

Quasi-planar graphs

Conjecture

Every n-vertex k-quasi-planar graph has at most $O_{k}(n)$ edges.

- Straight-line edges, $O(n \log n)$ Valtr 1997.
- x-monotone, $O(n \log n)$ Fox-Pach-S. 2014.
- t-intersecting, $O(n \log n)$, Rok-Walczak 2019.

Coloring Intersection Graphs:

- Coloring curves that cross a fixed curve, Rok, Walczak
- Outerstring graphs are -bounded, Rok, Walczak
- Triangle-free intersection graphs of line segments with large chromatic number, Pawlik, Kozik, Krawczyk, Lason, Micek, Trotter, Walczak

Complete topological graphs

Theorem (Fox-Pach-S. 2022)

Every complete n-vertex topological graph contains n^{ε} pairwise crossing edges.

Complete topological graphs

Theorem (Fox-Pach-S. 2022)

Every complete n-vertex topological graph contains n^{ε} pairwise crossing edges.

Problem

What large patterns can we find in complete topological graphs?

Complete topological graphs

Theorem (Fox-Pach-S. 2022)

Every complete n-vertex topological graph contains n^{ε} pairwise crossing edges.

Problem

Can we find a large set of pairwise disjoint edges?

No two disjoint edges

No two disjoint edges

$$
x
$$

No two disjoint edges

Simple Topological Graph $G=(V, E)$

$V=$ points in the plane.
$E=$ curves connecting the corresponding points (vertices).
Every pair of edges have at most 1 point in common.

We will only consider simple topological graphs.

Disjoint edges in complete simple topological graphs

Theorem (S. 2013, Fulek-Ruiz-Vargas 2014)

Every complete n-vertex simple topological graph contains $\Omega\left(n^{1 / 3}\right)$ pairwise disjoint edges.

Disjoint edges in complete simple topological graphs

Theorem (S. 2013, Fulek-Ruiz-Vargas 2014)

Every complete n-vertex simple topological graph contains $\Omega\left(n^{1 / 3}\right)$ pairwise disjoint edges.

Theorem (Ruiz-Vargas 2015)

Every complete n-vertex simple topological graph contains $n^{1 / 2-o(1)}$ pairwise disjoint edges.

New bound: $\Omega\left(n^{1 / 2}\right)$, Aichholzer, Garcia, Tejel, Vogtenhuber, Weinberger, 2022.

Disjoint edges in complete simple topological graphs

Theorem (S. 2013, Fulek-Ruiz-Vargas 2014)

Every complete n-vertex simple topological graph contains $\Omega\left(n^{1 / 3}\right)$ pairwise disjoint edges.

Theorem (Ruiz-Vargas 2015)

Every complete n-vertex simple topological graph contains $n^{1 / 2-o(1)}$ pairwise disjoint edges.

New bound: $\Omega\left(n^{1 / 2}\right)$, Aichholzer, Garcia, Tejel, Vogtenhuber, Weinberger, 2022.

Dense simple topological graphs?

Back to the sparse setting: Thrackles

Conjecture (Conway)

Every n-vertex simple topological graph with no 2 disjoint edges has at most n edges.

Back to the sparse setting: Thrackles

Conjecture (Conway)

Every n-vertex simple topological graph with no 2 disjoint edges has at most n edges.

Theorem (Fulek-Pach 2017)

Every n-vertex simple topological graph with no 2 disjoint edges has at most $1.3984 n$ edges.

Back to the sparse setting: Thrackles

Conjecture (Conway)

Every n-vertex simple topological graph with no 2 disjoint edges has at most n edges.

Theorem (Fulek-Pach 2017)

Every n-vertex simple topological graph with no 2 disjoint edges has at most $1.3984 n$ edges.

Theorem (Pach-Tóth 2003)

For fixed $k \geq 3$, every n-vertex simple topological graph with no k pairwise disjoint edges has at most $O\left(n \log ^{4 k-8} n\right)$ edges.

Back to the sparse setting: Thrackles

Conjecture (Conway)

Every n-vertex simple topological graph with no 2 disjoint edges has at most n edges.

Theorem (Fulek-Pach 2017)

Every n-vertex simple topological graph with no 2 disjoint edges has at most 1.3984n edges.

Theorem (Pach-Tóth 2003)

For fixed $k \geq 3$, every n-vertex simple topological graph with no k pairwise disjoint edges has at most $O\left(n \log ^{4 k-8} n\right)$ edges.

Theorem (Pach-Tóth 2003)

Every dense n-vertex simple topological graph has $(\log n)^{1-o(1)}$ pairwise disjoint edges.

Complete simple topological graphs

Problem

What large patterns can we find in complete simple topological graphs?

Weakly isomorphic topological graphs

Definition

Topological graphs G and H are weakly isomorphic if there is a incidence preserving bijection between ($V(G), E(G)$) and $(V(H), E(H))$ such that two edges in G cross if and only if the corresponding edges in H cross.

Weakly isomorphic topological graphs

Definition

Topological graphs G and H are weakly isomorphic if there is a incidence preserving bijection between ($V(G), E(G)$) and $(V(H), E(H)$) such that two edges in G cross if and only if the corresponding edges in H cross.

Complete simple topological graphs

Problem

What large patterns can we find in complete simple topological graphs?

Homogeneous configurations

Complete convex (geometric) graph, C_{m}.

Homogeneous configurations

Complete convex (geometric) graph, C_{m}.

$$
V=v_{1}, \ldots, v_{m}
$$

Edges $v_{i} v_{j}$ and $v_{k} v_{\ell}$ cross if and only if $i<k<j<\ell$ or $k<i<\ell<j$.

Homogeneous configurations

Problem. Does every sufficiently large complete simple topological graph contain a topological subgraph that is weakly isomorhpic to C_{5} ?

Homogeneous configurations

Problem. Does every sufficiently large complete simple topological graph contain a topological subgraph that is weakly isomorhpic to C_{5} ?

Answer: No!

Twisted complete graph

Twisted complete graph, T_{m}.

Twisted complete graph

Twisted complete graph, T_{m}.

$$
V\left(T_{m}\right)=v_{1}, \ldots, v_{m}
$$

Edges $v_{i} v_{j}$ and $v_{k} v_{\ell}$ cross if and only if $i<k<\ell<j$ or $k<i<j<\ell$.

Twisted complete graph, T_{m}.

$$
V\left(T_{m}\right)=v_{1}, \ldots, v_{m}
$$

Edges $v_{i} v_{j}$ and $v_{k} v_{\ell}$ cross if and only if $i<k<\ell<j$ or $k<i<j<\ell$.

Twisted complete graph

Harborth-Mengersen '92: T_{m} does not contain a subgraph weakly isomorphic to C_{5}.

$$
T_{m}=
$$

Twisted complete graph

Harborth-Mengersen '92: T_{m} does not contain a subgraph weakly isomorphic to C_{5}.

$$
T_{m}=\quad \stackrel{\bullet}{f(3)} \stackrel{f(1)}{\bullet} f(4) \quad f(2) f(5)
$$

Twisted complete graph

Harborth-Mengersen '92: T_{m} does not contain a subgraph weakly isomorphic to C_{5}.

Twisted complete graph

Harborth-Mengersen '92: T_{m} does not contain a subgraph weakly isomorphic to C_{5}.

Twisted complete graph

Harborth-Mengersen '92: T_{m} does not contain a subgraph weakly isomorphic to C_{5}.

A Ramsey-type theorem

Theorem (Pach-Solymosi-Tóth 2003)

Every complete simple topological graph on n vertices contains a topological subgraph on $m=\Omega\left(\log ^{1 / 8} n\right)$ vertices that is weakly isomorphic to C_{m} or T_{m}.

Theorem (S.-Zeng 2022+)

Every complete simple topological graph on n vertices contains a topological subgraph on $m=(\log n)^{1 / 4-o(1)}$ vertices that is weakly isomorphic to C_{m} or T_{m}.

New result

Theorem (S.-Zeng 2022+)

Every complete simple topological graph on n vertices contains a topological subgraph on $m=(\log n)^{1 / 4-o(1)}$ vertices that is weakly isomorphic to C_{m} or T_{m}.

Uniformly at random draw half circles above or below the axis.

New result

Theorem (S.-Zeng 2022+)

Every complete simple topological graph on n vertices contains a topological subgraph on $m=(\log n)^{1 / 4-o(1)}$ vertices that is weakly isomorphic to C_{m} or T_{m}.

Uniformly at random draw half circles above or below the axis.

New result

Theorem (S.-Zeng 2022+)

Every complete simple topological graph on n vertices contains a topological subgraph on $m=(\log n)^{1 / 4-o(1)}$ vertices that is weakly isomorphic to C_{m} or T_{m}.

Uniformly at random draw half circles above or below the axis.

New result

Theorem (S.-Zeng 2022+)

Every complete simple topological graph on n vertices contains a topological subgraph on $m=(\log n)^{1 / 4-o(1)}$ vertices that is weakly isomorphic to C_{m} or T_{m}.

Applying the probabilistic method: There is an n-vertex simple topological graph that does not contain a topological subgraph on $m=\lfloor c \log n\rfloor$ vertices that is weakly isomorphic to C_{m} or T_{m}.

Non-crossing path

Theorem (S.-Zeng 2022+)

Every complete simple topological graph on n vertices contains a topological subgraph on $m=(\log n)^{1 / 4-o(1)}$ vertices that is weakly isomorphic to C_{m} or T_{m}.

Non-crossing path

Theorem (S.-Zeng 2022+)

Every complete simple topological graph on n vertices contains a non-crossing path on $(\log n)^{1-o(1)}$ vertices.

Non-crossing path

Theorem (S.-Zeng 2022+)

Every complete simple topological graph on n vertices contains a non-crossing path on $(\log n)^{1-o(1)}$ vertices.

Also independently proved by Aichholzer, Garcia, Tejel, Vogtenhuber, Weinberger, 2022.

Non-crossing path

Theorem (S.-Zeng 2022+)

Every complete simple topological graph on n vertices contains a non-crossing path on $(\log n)^{1-o(1)}$ vertices.

Also independently proved by Aichholzer, Garcia, Tejel, Vogtenhuber, Weinberger, 2022.

Conjecture

There is an absolute constant $\epsilon>0$, such that every complete n-vertex simple topological graph contains a non-crossing path on n^{ϵ} vertices.

Non-crossing path

Theorem (S.-Zeng 2022+)

Every complete simple topological graph on n vertices contains a non-crossing path on $(\log n)^{1-o(1)}$ vertices.

Also independently proved by Aichholzer, Garcia, Tejel, Vogtenhuber, Weinberger, 2022.

Conjecture

There is an absolute constant $\epsilon>0$, such that every complete n-vertex simple topological graph contains a non-crossing path on n^{ϵ} vertices.

True for pairwise disjoint edges. S., Fulek, Ruiz-Vargas, Aichholzer, Garcia, Tejel, Vogtenhuber, Weinberger.

Non-crossing path

Theorem (S.-Zeng 2022+)

Every complete simple topological graph on n vertices contains a non-crossing path on $(\log n)^{1-o(1)}$ vertices.

Conjecture

There is an absolute constant $\epsilon>0$, such that every complete n-vertex simple topological graph contains a non-crossing path on n^{ϵ} vertices.

Problem: Can we find an edge that crosses very few other edges?

Short edge application

Theorem (Pach-Solymosi-Tóth 2003)

Every complete simple topological graph on n vertices contains a topological subgraph on $m=\Omega\left(\log ^{1 / 8} n\right)$ vertices that is weakly isomorphic to C_{m} or T_{m}.

Let $h=h(n)$ be the smallest integer such that every complete n-vertex simple topological graph contains an edge crossing at most h other edges.

Short edge application

Theorem (Pach-Solymosi-Tóth 2003)

Every complete simple topological graph on n vertices contains a topological subgraph on $m=\Omega\left(\log ^{1 / 8} n\right)$ vertices that is weakly isomorphic to C_{m} or T_{m}.

Let $h=h(n)$ be the smallest integer such that every complete n-vertex simple topological graph contains an edge crossing at most h other edges.
Valtr, Kynčl-Valtr: $\Omega\left(n^{3 / 2}\right)<h(n)<O\left(n^{2} / \log ^{1 / 4} n\right)$.

Short edge application

Theorem (S.-Zeng 2022+)

Every complete simple topological graph on n vertices contains a topological subgraph on $m=(\log n)^{1 / 4-o(1)}$ vertices that is weakly isomorphic to C_{m} or T_{m}.

Let $h=h(n)$ be the smallest integer such that every complete n-vertex simple topological graph contains an edge crossing at most h other edges.
Valtr, Kynčl-Valtr: $\Omega\left(n^{3 / 2}\right)<h(n)<O\left(n^{2} / \log ^{1 / 4} n\right)$.

Short edge application

Theorem (S.-Zeng 2022+)

Every complete simple topological graph on n vertices contains a topological subgraph on $m=(\log n)^{1 / 4-o(1)}$ vertices that is weakly isomorphic to C_{m} or T_{m}.

Let $h=h(n)$ be the smallest integer such that every complete n-vertex simple topological graph contains an edge crossing at most h other edges.
Valtr, Kynčl-Valtr: $\Omega\left(n^{3 / 2}\right)<h(n)<O\left(n^{2} / \log ^{1 / 4} n\right)$.
New bound: $h(n) \leq \frac{n^{2}}{(\log n)^{1 / 2-o(1)}}$.

Short edge application

Theorem (S.-Zeng 2022+)

Every complete simple topological graph on n vertices contains a topological subgraph on $m=(\log n)^{1 / 4-o(1)}$ vertices that is weakly isomorphic to C_{m} or T_{m}.

Let $h=h(n)$ be the smallest integer such that every complete n-vertex simple topological graph contains an edge crossing at most h other edges.
Valtr, Kynčl-Valtr: $\Omega\left(n^{3 / 2}\right)<h(n)<O\left(n^{2} / \log ^{1 / 4} n\right)$.
New bound: $h(n) \leq \frac{n^{2}}{(\log n)^{1 / 2-o(1)}}$.

Conjecture

$$
h(n)<n^{2-\epsilon}
$$

New results

Theorem (S.-Zeng 2022+)

Every complete simple topological graph on n vertices contains a topological subgraph on $m=(\log n)^{1 / 4-o(1)}$ vertices that is weakly isomorphic to C_{m} or T_{m}.

Theorem (S.-Zeng 2022+)

Every complete simple topological graph on n vertices contains a non-crossing path on $(\log n)^{1-o(1)}$ vertices.

New results

Theorem (S.-Zeng 2022+)

Every complete simple topological graph on n vertices contains a topological subgraph on $m=(\log n)^{1 / 4-o(1)}$ vertices that is weakly isomorphic to C_{m} or T_{m}.

Proof.

New results

Theorem (S.-Zeng 2022+)

Every complete simple topological graph on n vertices contains a topological subgraph on $m=(\log n)^{1 / 4-o(1)}$ vertices that is weakly isomorphic to C_{m} or T_{m}.

Proof.

New results

Theorem (S.-Zeng 2022+)

Every complete simple topological graph on n vertices contains a topological subgraph on $m=(\log n)^{1 / 4-o(1)}$ vertices that is weakly isomorphic to C_{m} or T_{m}.

Proof.

Observation

Pach-Solymosi-Tóth: For $v_{i}<v_{j}<v_{k}$, we there are only 4 configurations.

Observation

Pach-Solymosi-Tóth: For $v_{i}<v_{j}<v_{k}$, we there are only 4 configurations.

Observation

Pach-Solymosi-Tóth: For $v_{i}<v_{j}<v_{k}$, we there are only 4 configurations.

Observation

Pach-Solymosi-Tóth: Color the triple (v_{i}, v_{j}, v_{k}) from $\{000,001,010,100\}$

Observation

Pach-Solymosi-Tóth: Color the triple (v_{i}, v_{j}, v_{k}) from $\{000,001,010,100\}$

010

001

Observation

Goal: Find a monochromatic clique with respect to some color in $\{000,001,010,100\}$.

010

001

Improvements

Theorem (Pach-Solymosi-Tóth 2003)

Every complete simple topological graph on n vertices contains a topological subgraph on $m=\Omega\left(\log ^{1 / 8} n\right)$ vertices that is weakly isomorphic to C_{m} or T_{m}.

Rough idea:

(1) Erdős-Rado greedy argument on the triples.
(2) Erdős-Szekeres monotone subsequence theorem.
(Plus some nice topological arguments)

For $v_{i}<v_{j}<v_{k}<v_{\ell}$, if $\left(v_{i}, v_{j}, v_{k}\right)$ and $\left(v_{j}, v_{k}, v_{\ell}\right)$ have color 001, then so does $\left(v_{i}, v_{j}, v_{\ell}\right)$ and $\left(v_{i}, v_{k}, v_{\ell}\right)$.

Transitive colors: 001, 100

For $v_{i}<v_{j}<v_{k}<v_{\ell}$, if $\left(v_{i}, v_{j}, v_{k}\right)$ and $\left(v_{j}, v_{k}, v_{\ell}\right)$ have color 001, then so does $\left(v_{i}, v_{j}, v_{\ell}\right)$ and $\left(v_{i}, v_{k}, v_{\ell}\right)$.

For $v_{i}<v_{j}<v_{k}<v_{\ell}$, if $\left(v_{i}, v_{j}, v_{k}\right)$ and $\left(v_{j}, v_{k}, v_{\ell}\right)$ have color 001, then so does $\left(v_{i}, v_{j}, v_{\ell}\right)$ and $\left(v_{i}, v_{k}, v_{\ell}\right)$.

Transitive colors: 001, 100

For $v_{i}<v_{j}<v_{k}<v_{\ell}$, if $\left(v_{i}, v_{j}, v_{k}\right)$ and $\left(v_{j}, v_{k}, v_{\ell}\right)$ have color 001, then so does $\left(v_{i}, v_{j}, v_{\ell}\right)$ and $\left(v_{i}, v_{k}, v_{\ell}\right)$.

Transitive colors: 001, 100

For $v_{i}<v_{j}<v_{k}<v_{\ell}$, if $\left(v_{i}, v_{j}, v_{k}\right)$ and $\left(v_{j}, v_{k}, v_{\ell}\right)$ have color 001, then so does $\left(v_{i}, v_{j}, v_{\ell}\right)$ and $\left(v_{i}, v_{k}, v_{\ell}\right)$.

Transitive colors: 001, 100

For $v_{i}<v_{j}<v_{k}<v_{\ell}$, if $\left(v_{i}, v_{j}, v_{k}\right)$ and $\left(v_{j}, v_{k}, v_{\ell}\right)$ have color 001, then so does $\left(v_{i}, v_{j}, v_{\ell}\right)$ and $\left(v_{i}, v_{k}, v_{\ell}\right)$.

Monotone path

Monotone Path: $u_{1}<u_{2}<\cdots<u_{m},\left(u_{i}, u_{i+1}, u_{i+2}\right)$

Every triple is 001 , we have T_{m}.

Coloring properties

0. Not transitive
1. Transitive

2. Not transitive
3. Transitive

001

Improvements

Theorem (Pach-Solymosi-Tóth 2003)

Every complete simple topological graph on n vertices contains a topological subgraph on $m=\Omega\left(\log ^{1 / 8} n\right)$ vertices that is weakly isomorphic to C_{m} or T_{m}.

Rough idea:

(1) Erdős-Rado greedy argument on the triples.
(2) Erdős-Szekeres monotone subsequence theorem.

Transitive observation: $m=(\log n)^{1 / 6-o(1)}$.

Improvements

Theorem (Pach-Solymosi-Tóth 2003)

Every complete simple topological graph on n vertices contains a topological subgraph on $m=\Omega\left(\log ^{1 / 8} n\right)$ vertices that is weakly isomorphic to C_{m} or T_{m}.

Rough idea:

(1) Erdős-Rado greedy argument on the triples.
(2) Erd"̈s-Szekeres monotone subsequence theorem.

Transitive observation: $m=(\log n)^{1 / 6-o(1)}$.
Online Ramsey Game: Builder vs. Painter. $m=(\log n)^{1 / 4-o(1)}$. \square

Non-crossing path

Theorem (S.-Zeng 2022+)

Every complete simple topological graph on n vertices contains a non-crossing path of length $(\log n)^{1-o(1)}$.

Proof.

Non-crossing path

Set $m=\log ^{2} n$.
v_{1}

Non-crossing path

Set $m=\log ^{2} n$.

Non-crossing path

Set $m=\log ^{2} n$. Case 1. Planar $K_{2, m}$

Non-crossing path

Set $m=\log ^{2} n$. Case 1. Planar $K_{2, m}$

Non-crossing path

Set $m=\log ^{2} n$. Case 1. Planar $K_{2, m}$

Non-crossing path

Set $m=\log ^{2} n$. Case 1. Planar $K_{2, m}$

Non-crossing path

Set $m=\log ^{2} n$. Case 1. Planar $K_{2, m}$

Non-crossing path

Set $m=\log ^{2} n$. Case 1. Planar $K_{2, m}$

Lemma (Fulek-Ruiz-Vargas 2015)

There is a dense topological subgraph on m vertices that is weakly isomorphic to an x-monotone simple topological graph.

Non-crossing path

Set $m=\log ^{2} n$. Case 1. Planar $K_{2, m}$

Lemma (Tóth 2000)

Every dense m-vertex simple topological graph with edges drawn as x-monotone curves contains a non-crossing path on \sqrt{m} vertices.

Non-crossing path

Set $m=\log ^{2} n$. Case 2. Decreasing sequence of length n / m

Non-crossing path

Set $m=\log ^{2} n$. Case 2. Decreasing sequence of length n / m

Non-crossing path

Set $m=\log ^{2} n$. Case 2. Decreasing sequence of length n / m

Non-crossing path

Set $m=\log ^{2} n$. Case 2. Decreasing sequence of length $n /(2 m)$

Only keep the vertices inside or outside the triangle $v_{0} v_{1} v_{2}$.

Non-crossing path

Set $m=\log ^{2} n$. Case 2. Decreasing sequence of length $n /(2 m)$

Repeat this process $\log n / \log \log n=(\log n)^{1-o(1)}$ times.

Non-crossing path

Set $m=\log ^{2} n$. Case 2. Decreasing sequence of length $n /(2 m)$

Non-crossing path

Set $m=\log ^{2} n$. Case 2. Decreasing sequence of length $n /(2 m)$

Non-crossing path

Set $m=\log ^{2} n$. Case 2. Decreasing sequence of length $n /(2 m)$

Non-crossing path

Set $m=\log ^{2} n$. Case 2. Decreasing sequence of length $n /(2 m)$

Non-crossing path

Set $m=\log ^{2} n$. Case 2. Decreasing sequence of length $n /(2 m)$

Conclusion

Theorem (S.-Zeng 2022+)

Every complete simple topological graph on n vertices contains a topological subgraph on $m=(\log n)^{1 / 4-o(1)}$ vertices that is weakly isomorphic to C_{m} or T_{m}.

Non-trivial construction?

Problem

Find an n-vertex complete simple topological graph with no subgraph on $m=(\log n)^{1-\epsilon}$ vertices that is weakly isomorphic to C_{m} or T_{m}.

Non-crossing paths and short edge

Conjecture

There is an absolute constant $\epsilon>0$, such that every complete n-vertex simple topological graph contains a non-crossing path on n^{ϵ} vertices.

Conjecture

$$
h(n)<n^{2-\epsilon}
$$

Thank you!

