Unavoidable patterns in complete simple topological graphs

Andrew Suk (UC San Diego)

April 26, 2022

Topological Graph G = (V, E)

V =points in the plane.

E = curves connecting the corresponding points (vertices).

Theorem (Euler)

Every n-vertex topological graph with no crossing edges has at most 3n - 6 edges.

Theorem (Euler)

Every n-vertex topological graph with no crossing edges has at most 3n - 6 edges.

A topological graph is called k-quasi-planar, if there are no k pairwise crossing edges.

Conjecture

Theorem (Euler)

Every n-vertex topological graph with no crossing edges has at most 3n - 6 edges.

A topological graph is called k-quasi-planar, if there are no k pairwise crossing edges.

Conjecture

Every n-vertex k-quasi-planar graph has at most $O_k(n)$ edges.

 k = 3, Pach-Radoicic-Toth 2003, Ackerman-Tardos 2007 (Agarwal-Aronov-Pach-Pollack-Sharir 1997).

Theorem (Euler)

Every n-vertex topological graph with no crossing edges has at most 3n - 6 edges.

A topological graph is called k-quasi-planar, if there are no k pairwise crossing edges.

Conjecture

- k = 3, Pach-Radoicic-Toth 2003, Ackerman-Tardos 2007 (Agarwal-Aronov-Pach-Pollack-Sharir 1997).
- k = 4, Ackerman 2009.

Theorem (Euler)

Every n-vertex topological graph with no crossing edges has at most 3n - 6 edges.

A topological graph is called k-quasi-planar, if there are no k pairwise crossing edges.

Conjecture

- k = 3, Pach-Radoicic-Toth 2003, Ackerman-Tardos 2007 (Agarwal-Aronov-Pach-Pollack-Sharir 1997).
- k = 4, Ackerman 2009.
- $k \ge 5$, $n(\frac{c \log n}{\log k})^{2 \log k 4}$, Fox-Pach-S. 2022.

Conjecture

Conjecture

- Straight-line edges, $O(n \log n)$ Valtr 1997.
- x-monotone, $O(n \log n)$ Fox-Pach-S. 2014.
- t-intersecting, $O(n \log n)$, Rok-Walczak 2019.

Conjecture

Every n-vertex k-quasi-planar graph has at most $O_k(n)$ edges.

- Straight-line edges, $O(n \log n)$ Valtr 1997.
- x-monotone, $O(n \log n)$ Fox-Pach-S. 2014.
- t-intersecting, $O(n \log n)$, Rok-Walczak 2019.

Coloring Intersection Graphs:

- Coloring curves that cross a fixed curve, Rok, Walczak
- Outerstring graphs are -bounded, Rok, Walczak
- Triangle-free intersection graphs of line segments with large chromatic number, Pawlik, Kozik, Krawczyk, Lason, Micek, Trotter, Walczak

Complete topological graphs

Theorem (Fox-Pach-S. 2022)

Every complete n-vertex topological graph contains n^{ε} pairwise crossing edges.

Complete topological graphs

Theorem (Fox-Pach-S. 2022)

Every complete n-vertex topological graph contains n^{ε} pairwise crossing edges.

Problem

What large patterns can we find in complete topological graphs?

Complete topological graphs

Theorem (Fox-Pach-S. 2022)

Every complete n-vertex topological graph contains n^{ε} pairwise crossing edges.

Problem

Can we find a large set of pairwise disjoint edges?

No two disjoint edges

No two disjoint edges

• •

No two disjoint edges

Simple Topological Graph G = (V, E)

V =points in the plane.

E = curves connecting the corresponding points (vertices).

Every pair of edges have at most 1 point in common.

We will only consider simple topological graphs.

Disjoint edges in complete simple topological graphs

Theorem (S. 2013, Fulek-Ruiz-Vargas 2014)

Every complete n-vertex simple topological graph contains $\Omega(n^{1/3})$ pairwise disjoint edges.

Disjoint edges in complete simple topological graphs

Theorem (S. 2013, Fulek-Ruiz-Vargas 2014)

Every complete n-vertex simple topological graph contains $\Omega(n^{1/3})$ pairwise disjoint edges.

Theorem (Ruiz-Vargas 2015)

Every complete n-vertex simple topological graph contains $n^{1/2-o(1)}$ pairwise disjoint edges.

New bound: $\Omega(n^{1/2})$, Aichholzer, Garcia, Tejel, Vogtenhuber, Weinberger, 2022.

Disjoint edges in complete simple topological graphs

Theorem (S. 2013, Fulek-Ruiz-Vargas 2014)

Every complete n-vertex simple topological graph contains $\Omega(n^{1/3})$ pairwise disjoint edges.

Theorem (Ruiz-Vargas 2015)

Every complete n-vertex simple topological graph contains $n^{1/2-o(1)}$ pairwise disjoint edges.

New bound: $\Omega(n^{1/2})$, Aichholzer, Garcia, Tejel, Vogtenhuber, Weinberger, 2022.

Dense simple topological graphs?

Conjecture (Conway)

Every n-vertex simple topological graph with no 2 disjoint edges has at most n edges.

Conjecture (Conway)

Every n-vertex simple topological graph with no 2 disjoint edges has at most n edges.

Theorem (Fulek-Pach 2017)

Every n-vertex simple topological graph with no 2 disjoint edges has at most 1.3984n edges.

Conjecture (Conway)

Every n-vertex simple topological graph with no 2 disjoint edges has at most n edges.

Theorem (Fulek-Pach 2017)

Every n-vertex simple topological graph with no 2 disjoint edges has at most 1.3984n edges.

Theorem (Pach-Tóth 2003)

For fixed $k \ge 3$, every n-vertex simple topological graph with no k pairwise disjoint edges has at most $O(n \log^{4k-8} n)$ edges.

Conjecture (Conway)

Every n-vertex simple topological graph with no 2 disjoint edges has at most n edges.

Theorem (Fulek-Pach 2017)

Every n-vertex simple topological graph with no 2 disjoint edges has at most 1.3984n edges.

Theorem (Pach-Tóth 2003)

For fixed $k \ge 3$, every n-vertex simple topological graph with no k pairwise disjoint edges has at most $O(n \log^{4k-8} n)$ edges.

Theorem (Pach-Tóth 2003)

Every dense n-vertex simple topological graph has $(\log n)^{1-o(1)}$ pairwise disjoint edges.

Complete simple topological graphs

Problem

What large patterns can we find in complete simple topological graphs?

Weakly isomorphic topological graphs

Definition

Topological graphs G and H are **weakly isomorphic** if there is a incidence preserving bijection between (V(G), E(G)) and (V(H), E(H)) such that two edges in G cross if and only if the corresponding edges in H cross.

Weakly isomorphic topological graphs

Definition

Topological graphs G and H are **weakly isomorphic** if there is a incidence preserving bijection between (V(G), E(G)) and (V(H), E(H)) such that two edges in G cross if and only if the corresponding edges in H cross.

Complete simple topological graphs

Problem

What large patterns can we find in complete simple topological graphs?

Complete convex (geometric) graph, C_m .

Complete convex (geometric) graph, C_m .

$$V = v_1, \ldots, v_m$$

Edges $v_i v_j$ and $v_k v_\ell$ cross if and only if $i < k < j < \ell$ or $k < i < \ell < j$.

Problem. Does every sufficiently large complete simple topological graph contain a topological subgraph that is weakly isomorhpic to C_5 ?

Problem. Does every sufficiently large complete simple topological graph contain a topological subgraph that is weakly isomorhpic to C_5 ?

Answer: No!

Twisted complete graph

Twisted complete graph, T_m .

Twisted complete graph

Twisted complete graph, T_m .

$$V(T_m) = v_1, \ldots, v_m$$

Edges $v_i v_j$ and $v_k v_\ell$ cross if and only if $i < k < \ell < j$ or $k < i < j < \ell$.

Twisted complete graph, T_m .

$$V(T_m)=v_1,\ldots,v_m$$

Edges $v_i v_j$ and $v_k v_\ell$ cross if and only if $i < k < \ell < j$ or $k < i < j < \ell$.

Harborth-Mengersen '92: T_m does not contain a subgraph weakly isomorphic to C_5 .

 $T_m = -$

A Ramsey-type theorem

Theorem (Pach-Solymosi-Tóth 2003)

Every complete simple topological graph on n vertices contains a topological subgraph on $m = \Omega(\log^{1/8} n)$ vertices that is weakly isomorphic to C_m or T_m .

Theorem (S.-Zeng 2022+)

Every complete simple topological graph on n vertices contains a topological subgraph on $m = (\log n)^{1/4-o(1)}$ vertices that is weakly isomorphic to C_m or T_m .

Theorem (S.-Zeng 2022+)

Every complete simple topological graph on n vertices contains a topological subgraph on $m = (\log n)^{1/4-o(1)}$ vertices that is weakly isomorphic to C_m or T_m .

Uniformly at random draw half circles above or below the axis.

Theorem (S.-Zeng 2022+)

Every complete simple topological graph on n vertices contains a topological subgraph on $m = (\log n)^{1/4-o(1)}$ vertices that is weakly isomorphic to C_m or T_m .

Uniformly at random draw half circles above or below the axis.

Theorem (S.-Zeng 2022+)

Every complete simple topological graph on n vertices contains a topological subgraph on $m = (\log n)^{1/4-o(1)}$ vertices that is weakly isomorphic to C_m or T_m .

Uniformly at random draw half circles above or below the axis.

Theorem (S.-Zeng 2022+)

Every complete simple topological graph on n vertices contains a topological subgraph on $m = (\log n)^{1/4-o(1)}$ vertices that is weakly isomorphic to C_m or T_m .

Applying the probabilistic method: There is an n-vertex simple topological graph that does not contain a topological subgraph on $m = \lfloor c \log n \rfloor$ vertices that is weakly isomorphic to C_m or T_m .

Theorem (S.-Zeng 2022+)

Every complete simple topological graph on n vertices contains a topological subgraph on $m = (\log n)^{1/4-o(1)}$ vertices that is weakly isomorphic to C_m or T_m .

Theorem (S.-Zeng 2022+)

Every complete simple topological graph on n vertices contains a non-crossing path on $(\log n)^{1-o(1)}$ vertices.

Theorem (S.-Zeng 2022+)

Every complete simple topological graph on n vertices contains a non-crossing path on $(\log n)^{1-o(1)}$ vertices.

Also independently proved by Aichholzer, Garcia, Tejel, Vogtenhuber, Weinberger, 2022.

Theorem $(S.-Zeng\ 2022+)$

Every complete simple topological graph on n vertices contains a non-crossing path on $(\log n)^{1-o(1)}$ vertices.

Also independently proved by Aichholzer, Garcia, Tejel, Vogtenhuber, Weinberger, 2022.

Conjecture

There is an absolute constant $\epsilon > 0$, such that every complete n-vertex simple topological graph contains a non-crossing path on n^{ϵ} vertices.

Theorem (S.-Zeng 2022+)

Every complete simple topological graph on n vertices contains a non-crossing path on $(\log n)^{1-o(1)}$ vertices.

Also independently proved by Aichholzer, Garcia, Tejel, Vogtenhuber, Weinberger, 2022.

Conjecture

There is an absolute constant $\epsilon > 0$, such that every complete n-vertex simple topological graph contains a non-crossing path on n^{ϵ} vertices.

True for pairwise disjoint edges. S., Fulek, Ruiz-Vargas, Aichholzer, Garcia, Tejel, Vogtenhuber, Weinberger.

Theorem (S.-Zeng 2022+)

Every complete simple topological graph on n vertices contains a non-crossing path on $(\log n)^{1-o(1)}$ vertices.

Conjecture

There is an absolute constant $\epsilon > 0$, such that every complete n-vertex simple topological graph contains a non-crossing path on n^{ϵ} vertices.

Problem: Can we find an edge that crosses very few other edges?

Theorem (Pach-Solymosi-Tóth 2003)

Every complete simple topological graph on n vertices contains a topological subgraph on $m = \Omega(\log^{1/8} n)$ vertices that is weakly isomorphic to C_m or T_m .

Let h = h(n) be the smallest integer such that every complete n-vertex simple topological graph contains an edge crossing at most h other edges.

Theorem (Pach-Solymosi-Tóth 2003)

Every complete simple topological graph on n vertices contains a topological subgraph on $m = \Omega(\log^{1/8} n)$ vertices that is weakly isomorphic to C_m or T_m .

Let h = h(n) be the smallest integer such that every complete n-vertex simple topological graph contains an edge crossing at most h other edges.

Valtr, **Kynčl-Valtr**: $\Omega(n^{3/2}) < h(n) < O(n^2/\log^{1/4} n)$.

Theorem (S.-Zeng 2022+)

Every complete simple topological graph on n vertices contains a topological subgraph on $m = (\log n)^{1/4-o(1)}$ vertices that is weakly isomorphic to C_m or T_m .

Let h = h(n) be the smallest integer such that every complete n-vertex simple topological graph contains an edge crossing at most h other edges.

Valtr, **Kynčl-Valtr**: $\Omega(n^{3/2}) < h(n) < O(n^2/\log^{1/4} n)$.

Theorem (S.-Zeng 2022+)

Every complete simple topological graph on n vertices contains a topological subgraph on $m = (\log n)^{1/4-o(1)}$ vertices that is weakly isomorphic to C_m or T_m .

Let h = h(n) be the smallest integer such that every complete n-vertex simple topological graph contains an edge crossing at most h other edges.

Valtr, Kynčl-Valtr:
$$\Omega(n^{3/2}) < h(n) < O(n^2/\log^{1/4} n)$$
.

New bound:
$$h(n) \le \frac{n^2}{(\log n)^{1/2 - o(1)}}$$
.

Theorem (S.-Zeng 2022+)

Every complete simple topological graph on n vertices contains a topological subgraph on $m = (\log n)^{1/4-o(1)}$ vertices that is weakly isomorphic to C_m or T_m .

Let h = h(n) be the smallest integer such that every complete n-vertex simple topological graph contains an edge crossing at most h other edges.

Valtr, Kynčl-Valtr: $\Omega(n^{3/2}) < h(n) < O(n^2/\log^{1/4} n)$.

New bound: $h(n) \le \frac{n^2}{(\log n)^{1/2 - o(1)}}$.

Conjecture

$$h(n) < n^{2-\epsilon}$$
.

Theorem (S.-Zeng 2022+)

Every complete simple topological graph on n vertices contains a topological subgraph on $m = (\log n)^{1/4-o(1)}$ vertices that is weakly isomorphic to C_m or T_m .

Theorem (S.-Zeng 2022+)

Every complete simple topological graph on n vertices contains a non-crossing path on $(\log n)^{1-o(1)}$ vertices.

Theorem (S.-Zeng 2022+)

Every complete simple topological graph on n vertices contains a topological subgraph on $m = (\log n)^{1/4-o(1)}$ vertices that is weakly isomorphic to C_m or T_m .

Proof.

$$K_n =$$

Theorem (S.-Zeng 2022+)

Every complete simple topological graph on n vertices contains a topological subgraph on $m = (\log n)^{1/4-o(1)}$ vertices that is weakly isomorphic to C_m or T_m .

Proof.

Theorem (S.-Zeng 2022+)

Every complete simple topological graph on n vertices contains a topological subgraph on $m = (\log n)^{1/4-o(1)}$ vertices that is weakly isomorphic to C_m or T_m .

Proof.

Pach-Solymosi-Tóth: For $v_i < v_j < v_k$, we there are only 4 configurations.

Pach-Solymosi-Tóth: For $v_i < v_j < v_k$, we there are only 4 configurations.

Pach-Solymosi-Tóth: For $v_i < v_j < v_k$, we there are only 4 configurations.

Pach-Solymosi-Tóth: Color the triple (v_i, v_j, v_k) from $\{000, 001, 010, 100\}$

Pach-Solymosi-Tóth: Color the triple (v_i, v_j, v_k) from $\{000, 001, 010, 100\}$

Goal: Find a monochromatic clique with respect to some color in $\{000,001,010,100\}$.

Improvements

Theorem (Pach-Solymosi-Tóth 2003)

Every complete simple topological graph on n vertices contains a topological subgraph on $m = \Omega(\log^{1/8} n)$ vertices that is weakly isomorphic to C_m or T_m .

Rough idea:

- 1 Erdős-Rado greedy argument on the triples.
- 2 Erdős-Szekeres monotone subsequence theorem.

(Plus some nice topological arguments)

Monotone Path: $u_1 < u_2 < \cdots < u_m$, (u_i, u_{i+1}, u_{i+2})

Every triple is 001, we have T_m .

Coloring properties

000. Not transitive

100. Transitive

010. Not transitive

001. Transitive

Improvements

Theorem (Pach-Solymosi-Tóth 2003)

Every complete simple topological graph on n vertices contains a topological subgraph on $m = \Omega(\log^{1/8} n)$ vertices that is weakly isomorphic to C_m or T_m .

Rough idea:

- 1 Erdős-Rado greedy argument on the triples.
- 2 Erdős-Szekeres monotone subsequence theorem.

Transitive observation: $m = (\log n)^{1/6 - o(1)}$.

Improvements

Theorem (Pach-Solymosi-Tóth 2003)

Every complete simple topological graph on n vertices contains a topological subgraph on $m = \Omega(\log^{1/8} n)$ vertices that is weakly isomorphic to C_m or T_m .

Rough idea:

- Erdős-Rado greedy argument on the triples.
- Erdős-Szekeres monotone subsequence theorem.

Transitive observation: $m = (\log n)^{1/6 - o(1)}$.

Online Ramsey Game: Builder vs. Painter. $m = (\log n)^{1/4 - o(1)}$.

Theorem (S.-Zeng 2022+)

Every complete simple topological graph on n vertices contains a non-crossing path of length $(\log n)^{1-o(1)}$.

Proof.

Set $m = \log^2 n$.

Set $m = \log^2 n$.

Set $m = \log^2 n$. Case 1. Planar $K_{2,m}$

Lemma (Fulek-Ruiz-Vargas 2015)

There is a dense topological subgraph on m vertices that is weakly isomorphic to an x-monotone simple topological graph.

Set $m = \log^2 n$. Case 1. Planar $K_{2,m}$

Lemma (Tóth 2000)

Every dense m-vertex simple topological graph with edges drawn as x-monotone curves contains a non-crossing path on \sqrt{m} vertices.

Set $m = \log^2 n$. Case 2. Decreasing sequence of length n/(2m)

Only keep the vertices inside or outside the triangle $v_0v_1v_2$.

Set $m = \log^2 n$. Case 2. Decreasing sequence of length n/(2m)

Repeat this process $\log n / \log \log n = (\log n)^{1-o(1)}$ times.

Conclusion

Theorem (S.-Zeng 2022+)

Every complete simple topological graph on n vertices contains a topological subgraph on $m = (\log n)^{1/4-o(1)}$ vertices that is weakly isomorphic to C_m or T_m .

Non-trivial construction?

Problem

Find an n-vertex complete simple topological graph with no subgraph on $m = (\log n)^{1-\epsilon}$ vertices that is weakly isomorphic to C_m or T_m .

Non-crossing paths and short edge

Conjecture

There is an absolute constant $\epsilon > 0$, such that every complete n-vertex simple topological graph contains a non-crossing path on n^{ϵ} vertices.

Conjecture

$$h(n) < n^{2-\epsilon}$$
.

Thank you!

Unavoidable patterns in complete simple topological graphs

Andrew Suk (UC San Diego)