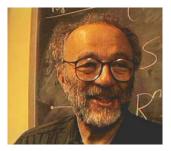
Unavoidable patterns in complete simple topological graphs

Andrew Suk (UC San Diego)

Goodman-Pollack DCG Day, April 12, 2022

Andrew Suk (UC San Diego) Unavoidable patterns in complete simple topological graphs

Goodman-Pollack DCG Day



Combinatorica 17 (1) (1997) 1-9

COMBINATORICA Bolyai Society – Springer-Verlag

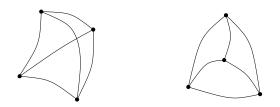
QUASI-PLANAR GRAPHS HAVE A LINEAR NUMBER OF EDGES

PANKAJ K. AGARWAL, BORIS ARONOV, JÁNOS PACH, RICHARD POLLACK and MICHA SHARIR

Received January 25, 1996

A graph is called *quasi-planar* if it can be drawn in the plane so that no three of its edges are pairwise crossing. It is shown that the maximum number of edges of a quasi-planar graph with n vertices is O(n).

- V = points in the plane.
- E = curves connecting the corresponding points (vertices).



Every n-vertex topological graph with no crossing edges has at most 3n - 6 edges.

Every n-vertex topological graph with no crossing edges has at most 3n - 6 edges.

A topological graph is called *k*-**quasi-planar**, if there are no *k* pairwise crossing edges.

Conjecture

Every n-vertex topological graph with no crossing edges has at most 3n - 6 edges.

A topological graph is called *k*-**quasi-planar**, if there are no *k* pairwise crossing edges.

Conjecture

Every n-vertex k-quasi-planar graph has at most $O_k(n)$ edges.

 k = 3, Pach-Radoicic-Toth 2003, Ackerman-Tardos 2007 (Agarwal-Aronov-Pach-Pollack-Sharir 1997).

Every n-vertex topological graph with no crossing edges has at most 3n - 6 edges.

A topological graph is called *k*-**quasi-planar**, if there are no *k* pairwise crossing edges.

Conjecture

- k = 3, Pach-Radoicic-Toth 2003, Ackerman-Tardos 2007 (Agarwal-Aronov-Pach-Pollack-Sharir 1997).
- *k* = 4, Ackerman 2009.

Every n-vertex topological graph with no crossing edges has at most 3n - 6 edges.

A topological graph is called *k*-**quasi-planar**, if there are no *k* pairwise crossing edges.

Conjecture

- k = 3, Pach-Radoicic-Toth 2003, Ackerman-Tardos 2007 (Agarwal-Aronov-Pach-Pollack-Sharir 1997).
- *k* = 4, Ackerman 2009.

•
$$k \ge 5$$
, $n(\frac{c \log n}{\log k})^{2 \log k - 4}$, Fox-Pach-S. 2022.

Every n-vertex topological graph with no crossing edges has at most 3n - 6 edges.

A topological graph is called *k*-**quasi-planar**, if there are no *k* pairwise crossing edges.

Conjecture

- k = 3, Pach-Radoicic-Toth 2003, Ackerman-Tardos 2007 (Agarwal-Aronov-Pach-Pollack-Sharir 1997).
- *k* = 4, Ackerman 2009.
- $k \ge 5$, $n(\frac{c \log n}{\log k})^{2 \log k 4}$, Fox-Pach-S. 2022.
- Straight-line edges, $O(n \log n)$ Valtr 1997.

Theorem (Fox-Pach-S. 2022)

Every complete n-vertex topological graph contains n^{ε} pairwise crossing edges.

Theorem (Fox-Pach-S. 2022)

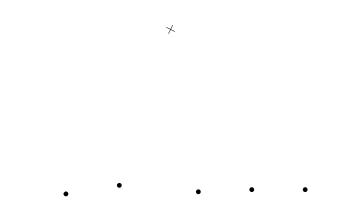
Every complete n-vertex topological graph contains n^{ε} pairwise crossing edges.

Problem

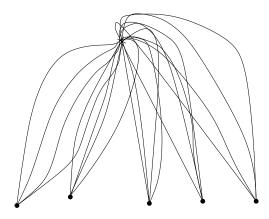
What large patterns can we find in complete topological graphs?

No two disjoint edges

No two disjoint edges



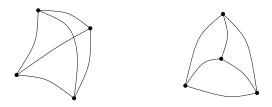
No two disjoint edges



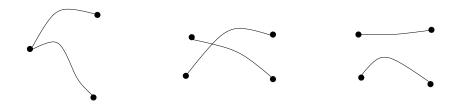
Simple Topological Graph G = (V, E)

- V = points in the plane.
- E = curves connecting the corresponding points (vertices).

Every pair of edges have at most 1 point in common.



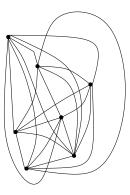
We will only consider simple topological graphs.



Complete simple topological graphs

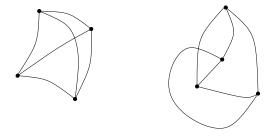
Problem

What large patterns can we find in complete simple topological graphs?



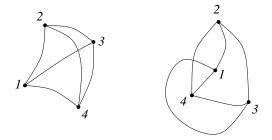
Definition

Topological graphs G and H are **weakly isomorphic** if there is a incidence preserving bijection between (V(G), E(G)) and (V(H), E(H)) such that two edges in G cross if and only if the corresponding edges in H cross.



Definition

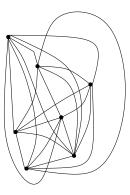
Topological graphs G and H are **weakly isomorphic** if there is a incidence preserving bijection between (V(G), E(G)) and (V(H), E(H)) such that two edges in G cross if and only if the corresponding edges in H cross.



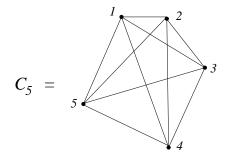
Complete simple topological graphs

Problem

What large patterns can we find in complete simple topological graphs?



Complete convex (geometric) graph, C_m .

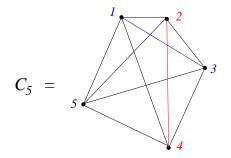


Homogeneous configurations

Complete convex (geometric) graph, C_m .

$$V = v_1, \ldots, v_m$$

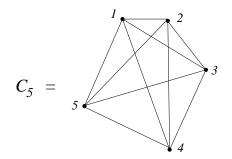
Edges $v_i v_j$ and $v_k v_\ell$ cross if and only if $i < k < j < \ell$ or $k < i < \ell < j$.



Problem. Does every sufficiently large complete simple topological graph contain a topological subgraph that is weakly isomorphic to C_5 ?

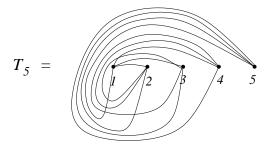


Problem. Does every sufficiently large complete simple topological graph contain a topological subgraph that is weakly isomorphic to C_5 ?



Answer: No!

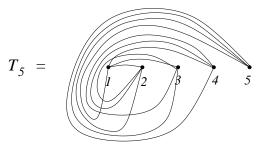
Twisted complete graph, T_m .



Twisted complete graph, T_m .

$$V(T_m) = v_1, \ldots, v_m$$

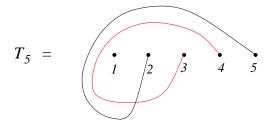
Edges $v_i v_j$ and $v_k v_\ell$ cross if and only if $i < k < \ell < j$ or $k < i < j < \ell$.

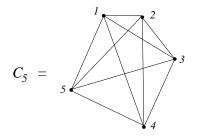


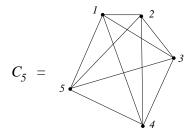
Twisted complete graph, T_m .

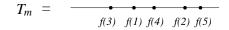
$$V(T_m) = v_1, \ldots, v_m$$

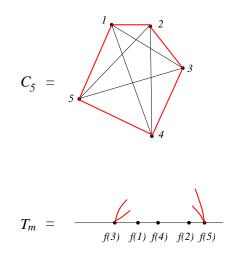
Edges $v_i v_j$ and $v_k v_\ell$ cross if and only if $i < k < \ell < j$ or $k < i < j < \ell$.



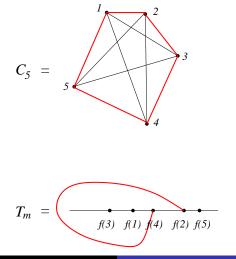




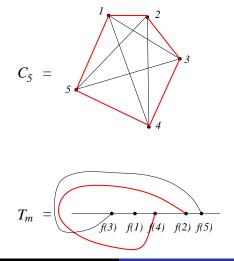




Harborth-Mengersen '92: T_m does not contain a subgraph weakly isomorphic to C_5 .

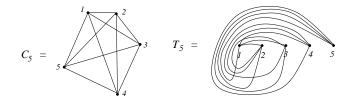


Andrew Suk (UC San Diego) Unavoidable patterns in complete simple topological graphs



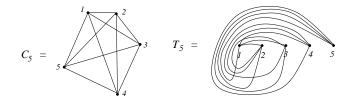
Theorem (Pach-Solymosi-Tóth 2003)

Every complete simple topological graph on n vertices contains a topological subgraph on $m = \Omega(\log^{1/8} n)$ vertices that is weakly isomorphic to C_m or T_m .



Theorem (S.-Zeng 2022+)

Every complete simple topological graph on n vertices contains a topological subgraph on $m = (\log n)^{1/4-o(1)}$ vertices that is weakly isomorphic to C_m or T_m .



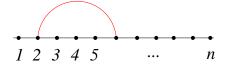
Theorem (S.-Zeng 2022+)

Every complete simple topological graph on n vertices contains a topological subgraph on $m = (\log n)^{1/4-o(1)}$ vertices that is weakly isomorphic to C_m or T_m .

Uniformly at random draw half circles above or below the axis.

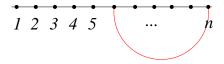
Every complete simple topological graph on n vertices contains a topological subgraph on $m = (\log n)^{1/4-o(1)}$ vertices that is weakly isomorphic to C_m or T_m .

Uniformly at random draw half circles above or below the axis.



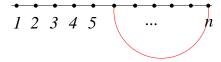
Every complete simple topological graph on n vertices contains a topological subgraph on $m = (\log n)^{1/4-o(1)}$ vertices that is weakly isomorphic to C_m or T_m .

Uniformly at random draw half circles above or below the axis.

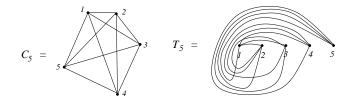


Every complete simple topological graph on n vertices contains a topological subgraph on $m = (\log n)^{1/4-o(1)}$ vertices that is weakly isomorphic to C_m or T_m .

Applying the probabilistic method: There is an *n*-vertex simple topological graph that does not contain a topological subgraph on $m = \lfloor c \log n \rfloor$ vertices that is weakly isomorphic to C_m or T_m .



Every complete simple topological graph on n vertices contains a topological subgraph on $m = (\log n)^{1/4-o(1)}$ vertices that is weakly isomorphic to C_m or T_m .



Every complete simple topological graph on n vertices contains a non-crossing path on $(\log n)^{1-o(1)}$ vertices.

Every complete simple topological graph on n vertices contains a non-crossing path on $(\log n)^{1-o(1)}$ vertices.

Conjecture

There is an absolute constant $\epsilon > 0$, such that every complete n-vertex simple topological graph contains a non-crossing path on n^{ϵ} vertices.

Every complete simple topological graph on n vertices contains a non-crossing path on $(\log n)^{1-o(1)}$ vertices.

Conjecture

There is an absolute constant $\epsilon > 0$, such that every complete *n*-vertex simple topological graph contains a non-crossing path on n^{ϵ} vertices.

Pairwise disjoint edges. S., Fulek and Ruiz-Vargas, Ruiz-Vargas: $n^{1/2-o(1)}$ pairwise disjoint edges.

Every complete simple topological graph on n vertices contains a non-crossing path on $(\log n)^{1-o(1)}$ vertices.

Conjecture

There is an absolute constant $\epsilon > 0$, such that every complete *n*-vertex simple topological graph contains a non-crossing path on n^{ϵ} vertices.

Problem: Can we find an edge that crosses very few other edges?

Every complete simple topological graph on n vertices contains a topological subgraph on $m = (\log n)^{1/4-o(1)}$ vertices that is weakly isomorphic to C_m or T_m .

Let h = h(n) be the smallest integer such that every complete *n*-vertex simple topological graph contains an edge crossing at most *h* other edges.

Every complete simple topological graph on n vertices contains a topological subgraph on $m = (\log n)^{1/4-o(1)}$ vertices that is weakly isomorphic to C_m or T_m .

Let h = h(n) be the smallest integer such that every complete *n*-vertex simple topological graph contains an edge crossing at most *h* other edges.

Valtr, Kynčl-Valtr: $\Omega(n^{3/2}) < h(n) < O(n^2/\log^{1/4} n)$.

Every complete simple topological graph on n vertices contains a topological subgraph on $m = (\log n)^{1/4-o(1)}$ vertices that is weakly isomorphic to C_m or T_m .

Let h = h(n) be the smallest integer such that every complete *n*-vertex simple topological graph contains an edge crossing at most *h* other edges.

Valtr, Kynčl-Valtr: $\Omega(n^{3/2}) < h(n) < O(n^2/\log^{1/4} n).$

New bound: $h(n) \leq \frac{n^2}{(\log n)^{1/2-o(1)}}$.

Every complete simple topological graph on n vertices contains a topological subgraph on $m = (\log n)^{1/4-o(1)}$ vertices that is weakly isomorphic to C_m or T_m .

Let h = h(n) be the smallest integer such that every complete *n*-vertex simple topological graph contains an edge crossing at most *h* other edges.

Valtr, Kynčl-Valtr: $\Omega(n^{3/2}) < h(n) < O(n^2/\log^{1/4} n).$

New bound: $h(n) \leq \frac{n^2}{(\log n)^{1/2-o(1)}}$.

Conjecture

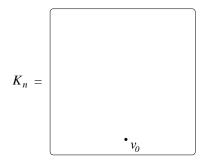
$$h(n) < n^{2-\epsilon}.$$

Every complete simple topological graph on n vertices contains a topological subgraph on $m = (\log n)^{1/4-o(1)}$ vertices that is weakly isomorphic to C_m or T_m .

Proof.

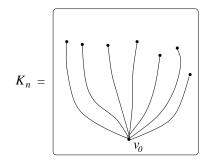
Every complete simple topological graph on n vertices contains a topological subgraph on $m = (\log n)^{1/4-o(1)}$ vertices that is weakly isomorphic to C_m or T_m .

Proof.

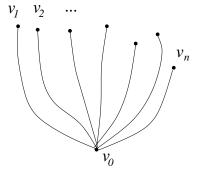


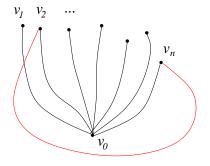
Every complete simple topological graph on n vertices contains a topological subgraph on $m = (\log n)^{1/4-o(1)}$ vertices that is weakly isomorphic to C_m or T_m .

Proof.

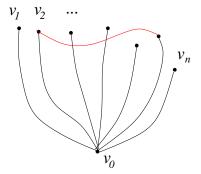


Proof

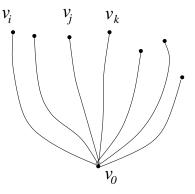




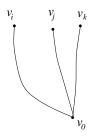
Proof



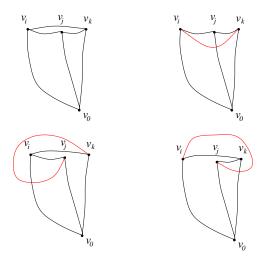
Pach-Solymosi-Tóth: For $v_i < v_j < v_k$, we there are only 4 configurations.



Pach-Solymosi-Tóth: For $v_i < v_j < v_k$, we there are only 4 configurations.

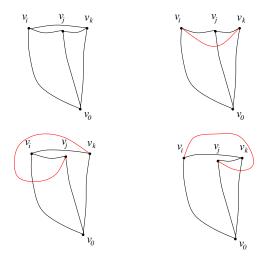


Pach-Solymosi-Tóth: For $v_i < v_j < v_k$, we there are only 4 configurations.



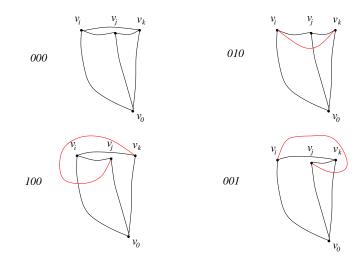
Observation

Pach-Solymosi-Tóth: Color the triple (v_i, v_j, v_k) from $\{000, 001, 010, 100\}$



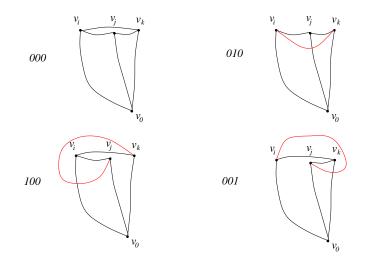
Observation

Pach-Solymosi-Tóth: Color the triple (v_i, v_j, v_k) from $\{000, 001, 010, 100\}$



Observation

Goal: Find a monochromatic clique with respect to some color in $\{000, 001, 010, 100\}$.



Theorem (Pach-Solymosi-Tóth 2003)

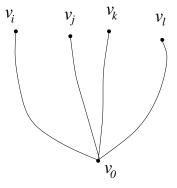
Every complete simple topological graph on n vertices contains a topological subgraph on $m = \Omega(\log^{1/8} n)$ vertices that is weakly isomorphic to C_m or T_m .

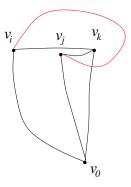
Rough idea:

- Erdős-Rado greedy argument on the triples.
- 2 Erdős-Szekeres monotone subsequence theorem.

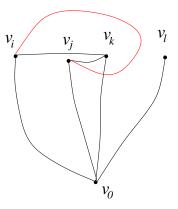
(Plus some nice topological arguments)

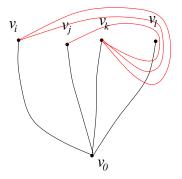


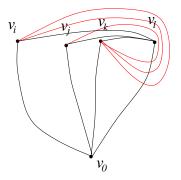


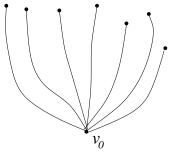


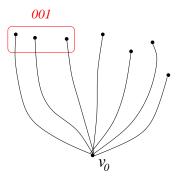
Transitive colors: 001, 100

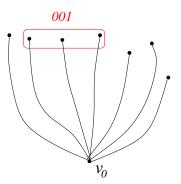


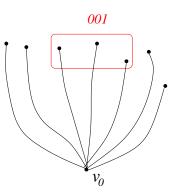


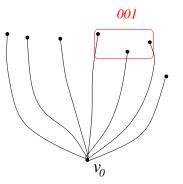


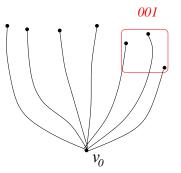


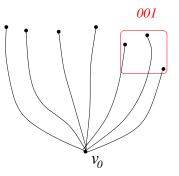








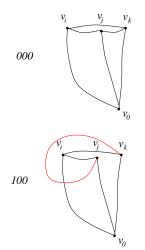




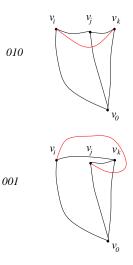
Every triple is 001, we have T_m .

Coloring properties

- 000. Not transitive
- 100. Transitive



010. Not transitive **001**. Transitive



Theorem (Pach-Solymosi-Tóth 2003)

Every complete simple topological graph on n vertices contains a topological subgraph on $m = \Omega(\log^{1/8} n)$ vertices that is weakly isomorphic to C_m or T_m .

Rough idea:

- Erdős-Rado greedy argument on the triples.
- 2 Erdős-Szekeres monotone subsequence theorem.

Transitive observation: $m = (\log n)^{1/6-o(1)}$.

Theorem (Pach-Solymosi-Tóth 2003)

Every complete simple topological graph on n vertices contains a topological subgraph on $m = \Omega(\log^{1/8} n)$ vertices that is weakly isomorphic to C_m or T_m .

Rough idea:

- Erdős-Rado greedy argument on the triples.
- Erdős-Szekeres monotone subsequence theorem.

Transitive observation: $m = (\log n)^{1/6-o(1)}$.

Online Ramsey Game: Builder vs. Painter. $m = (\log n)^{1/4-o(1)}$.

Every complete simple topological graph on n vertices contains a topological subgraph on $m = (\log n)^{1/4-o(1)}$ vertices that is weakly isomorphic to C_m or T_m .

Non-trivial construction?

Problem

Find an n-vertex complete simple topological graph with no subgraph on $m = (\log n)^{1-\epsilon}$ vertices that is weakly isomorphic to C_m or T_m .

Conjecture

There is an absolute constant $\epsilon > 0$, such that every complete *n*-vertex simple topological graph contains a non-crossing path on n^{ϵ} vertices.

Conjecture

$$h(n) < n^{2-\epsilon}.$$

Thank you!