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Classical problem of Erdős

P = N points in the plane, no 4 collinear.

Question: What is the size of the largest subset in P in general
position (no 3 collinear)?
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Classical problem of Erdős

Notation
Let α2(N) be the largest integer such that every N-element point
set in the plane with no 4-collinear members, contains α2(N) in
general position.
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Classical problem of Erdős

Notation
Let α2(N) be the largest integer such that every N-element point
set in the plane with no 4-collinear members, contains α2(N) in
general position.

Erdős: α2(N) ≥ Ω(
√
N).
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Classical problem of Erdős

Notation
Let α2(N) be the largest integer such that every N-element point
set in the plane with no 4-collinear members, contains α2(N) in
general position.

Erdős: α2(N) ≥ Ω(
√
N). S ⊂ P , S maximal set in general

position.
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Classical problem of Erdős

Notation
Let α2(N) be the largest integer such that every N-element point
set in the plane with no 4-collinear members, contains α2(N) in
general position.

Erdős: α2(N) ≥ Ω(
√
N).

(|S|
2

)

3 ≥ N
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Classical problem of Erdős

Notation
Let α2(N) be the largest integer such that every N-element point
set in the plane with no 4-collinear members, contains α2(N) in
general position.

Best known lower bound

Theorem (Füredi 1991, Phelps-Rödl 1986)

α2(N) ≥ Ω(
√
N logN)
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Classical problem of Erdős

Notation
Let α2(N) be the largest integer such that every N-element point
set in the plane with no 4-collinear members, contains α2(N) in
general position.

Best known lower bound

Theorem (Füredi 1991, Phelps-Rödl 1986)

α2(N) ≥ Ω(
√
N logN)

Theorem (Füredi 1991, Furstenberg-Katznelson 1989)

α2(N) < o(N)
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Classical problem of Erdős

Notation
Let α2(N) be the largest integer such that every N-element point
set in the plane with no 4-collinear members, contains α2(N) in
general position.

Best known lower bound

Theorem (Füredi 1991, Phelps-Rödl 1986)

α2(N) ≥ Ω(
√
N logN)

Best known upper bound

Theorem (Balogh-Solymosi 2018)

α2(N) < N5/6+o(1)
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Higher dimensions

Given:

P = N points in R
d , no d + 2 on a hyperplane.

Question: What is the largest subset in general position?
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Higher dimensions

Notation
Let αd (N) be the largest integer such that every N-element point
set in R

d with no d + 2 on a common hyperplane, contains αd (N)
in general position (no d+1 points on a hyperplane).

Hypergraph
V = N points in R

d

E = (d + 1)-tuples on a hyperplane
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Higher dimensions

Erdős: αd (N) ≥ Ω(N1/d ).

Best known lower bound

Theorem (Cardinal, Tóth, Wood 2017, Kostochka, Mubayi,
Verstraete 2014)

αd (N) ≥ Ω((N logN)1/d ).
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Higher dimensions

Erdős: αd (N) ≥ Ω(N1/d ).

Best known lower bound

Theorem (Cardinal, Tóth, Wood 2017, Kostochka, Mubayi,
Verstraete 2014)

αd (N) ≥ Ω((N logN)1/d ).

Density Hales-Jewett

Theorem (Cardinal, Tóth, Wood 2017, Miĺıcev́ı 2017)

αd (N) < o(N).
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Main result

Theorem (S.-Zeng, 2023)

Let d ≥ 3. When d is odd,

αd (N) < N
1
2
+ 1

2d
+o(1).

When d is even,

αd (N) < N
1
2
+ 1

d−1
+o(1).
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Main result

Theorem (S.-Zeng, 2023)

Let d ≥ 3. When d is odd,

αd (N) < N
1
2
+ 1

2d
+o(1).

When d is even,

αd (N) < N
1
2
+ 1

d−1
+o(1).

Examples:

α3(N) < N2/3+o(1) ,

α4(N) < N3/4+o(1) ,

α5(N) < N3/5+o(1) ,

α6(N) < N7/10+o(1) ,
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Main result

Theorem (S.-Zeng, 2023)

Let d ≥ 3. When d is odd,

αd (N) < N
1
2
+ 1

2d
+o(1).

When d is even,

αd (N) < N
1
2
+ 1

d−1
+o(1).

Best known lower bound αd (N) ≥ Ω((N logN)1/d ).
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Main result

Theorem (S.-Zeng, 2023)

Let d ≥ 3. When d is odd,

αd (N) < N
1
2
+ 1

2d
+o(1).

When d is even,

αd (N) < N
1
2
+ 1

d−1
+o(1).

Best known lower bound αd (N) ≥ Ω((N logN)1/d ).

Original problem. No d + 2 points on a hyperplane.
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Main result

Theorem (S.-Zeng, 2023)

Let d ≥ 3. When d is odd,

αd (N) < N
1
2
+ 1

2d
+o(1).

When d is even,

αd (N) < N
1
2
+ 1

d−1
+o(1).

Best known lower bound αd (N) ≥ Ω((N logN)1/d ).

Original problem. No d + 2 points on a hyperplane.
Generalization. No d + 5 points on a hyperplane,

α∗
d
(N) < N

1
2
+o(1).
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Main result

Theorem (S.-Zeng, 2023)

Let d ≥ 3. When d is odd,

αd (N) < N
1
2
+ 1

2d
+o(1).

When d is even,

αd (N) < N
1
2
+ 1

d−1
+o(1).

Best known lower bound αd (N) ≥ Ω((N logN)1/d ).

Original problem. No d + 2 points on a hyperplane.
Generalization. No d + 5 points on a hyperplane,

α∗
d
(N) < N

1
2
+o(1).

Example. Ω((N logN)1/3) < α∗
3(N) < N1/2+o(1)
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Idea of the proof: Subset of [n]D .

Point set
P = [n]D

Hypergraph container method

Establish a supersaturation result on [n]D .

Apply the hypergraph container lemma and the probabilistic
method (Balogh-Morris-Samotij, Saxton-Thomason 2015).
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Idea of the proof: Subset of [n]D .

Hypergraph container method

Theorem (Balogh-Solymosi 2018)

Any subset A ⊂ [n]D of size nD−γ , contains at least

cn2D−(D+1)γ−o(1) collinear triples.

=D[n]
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Idea of the proof: Subset of [n]D .

Hypergraph container method

Theorem (Balogh-Solymosi 2018)

Any subset A ⊂ [n]D of size nD−γ , contains at least

cn2D−(D+1)γ−o(1) collinear triples.

Apply the hypergraph container lemma and the probabilistic
method (Balogh-Morris-Samotij, Saxton-Thomason 2015)..
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Idea of the proof: Subset of [n]D .

Hypergraph container method

Theorem (Balogh-Solymosi 2018)

Any subset A ⊂ [n]D of size nD−γ , contains at least

cn2D−(D+1)γ−o(1) collinear triples.

Apply the hypergraph container lemma and the probabilistic
method (Balogh-Morris-Samotij, Saxton-Thomason 2015)..

Theorem (Balogh-Solymosi 2018)

α2(N) < N5/6+o(1)
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Definition: k-flats. k = d − 1

We want many (k + 2)-tuples on a k-flat.

k-flat: k-dimensional affine subspace of RD .

1−flat 2−flat
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Idea of the proof: Subset of [n]D .

Grid:
P = [n]D

We want a supersaturation result for (k + 2)-tuples on a k-flat
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Idea of the proof: Subset of [n]D .

Grid:
P = [n]D

We want a supersaturation result for (k + 2)-tuples on a k-flat

Balogh-Solymosi supersaturation result.

Theorem (Balogh-Solymosi 2018)

Any subset A ⊂ [n]D of size nD−γ , contains at least

cn2D−(D+1)γ−o(1) collinear triples.
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Idea of the proof: Subset of [n]D .

Grid:
P = [n]D

We want a supersaturation result for (k + 2)-tuples on a k-flat

Balogh-Solymosi supersaturation result.

Theorem (Balogh-Solymosi 2018)

Any subset A ⊂ [n]D of size nD−γ , contains at least

cn2D−(D+1)γ−o(1) collinear triples.

Adding k − 1 points to a collinear triple gives k + 2 points on a
k-flat.

Andrew Suk (UC San Diego) Higher dimensional point sets in general position



Idea of the proof: Subset of [n]D .

Theorem (Balogh-Solymosi 2018)

Any subset A ⊂ [n]D of size nD−γ , contains at least

cn(k+1)D−(D+1)γ−o(1) (k + 2)-tuples that lie on a k-flat.

=D[n]
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Idea of the proof: Subset of [n]D .

Theorem (Balogh-Solymosi 2018)

Any subset A ⊂ [n]D of size nD−γ , contains at least

cn(k+1)D−(D+1)γ−o(1) (k + 2)-tuples that lie on a k-flat.

= AD[n]
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Idea of the proof: Subset of [n]D .

Theorem (Balogh-Solymosi 2018)

Any subset A ⊂ [n]D of size nD−γ , contains at least

cn(k+1)D−(D+1)γ−o(1) (k + 2)-tuples that lie on a k-flat.

= AD[n]
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Idea of the proof: Subset of [n]D .

Theorem (Balogh-Solymosi 2018)

Any subset A ⊂ [n]D of size nD−γ , contains at least

cn(k+1)D−(D+1)γ−o(1) (k + 2)-tuples that lie on a k-flat.

= AD[n]
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Idea of the proof: Subset of [n]D .

Theorem (Balogh-Solymosi 2018)

Any subset A ⊂ [n]D of size nD−γ , contains at least

cn(k+1)D−(D+1)γ−o(1) (k + 2)-tuples that lie on a k-flat.

= AD[n]
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Idea of the proof: Subset of [n]D .

Theorem (Balogh-Solymosi 2018)

Any subset A ⊂ [n]D of size nD−γ , contains at least

cn(k+1)D−(D+1)γ−o(1) (k + 2)-tuples that lie on a k-flat.

Hypergraph
V = A ⊂ [n]D points in R

D

E = (k + 2)-tuples on a k-flat (degenerate)

Large maximum degree ⇒ Bad
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Idea of the proof: Subset of [n]D .

Theorem (Balogh-Solymosi 2018)

Any subset A ⊂ [n]D of size nD−γ , contains at least

cn(k+1)D−(D+1)γ−o(1) (k + 2)-tuples that lie on a k-flat.

Hypergraph
V = A ⊂ [n]D points in R

D

E = (k + 2)-tuples on a k-flat (degenerate)

Apply the hypergraph container lemma and the probabilistic
method.
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Degenerate (k + 2)-tuples

Let A be a set of k + 2 points in R
d that lies on k-flat.
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Degenerate (k + 2)-tuples

Let A be a set of k + 2 points in R
d that lies on k-flat.

Defintion: We say that A is degenerate if there is a proper subset
A′ ⊂ A that lies on a (|A′| − 2)-flat.
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Degenerate (k + 2)-tuples

Let A be a set of k + 2 points in R
d that lies on k-flat.

Defintion: We say that A is degenerate if there is a proper subset
A′ ⊂ A that lies on a (|A′| − 2)-flat.

Defintion: We say that A is non-degenerate if there is a proper
subset A′ ⊂ A is in general position.
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Degenerate (k + 2)-tuples

Let A be a set of k + 2 points in R
d that lies on k-flat.

Defintion: We say that A is degenerate if there is a proper subset
A′ ⊂ A that lies on a (|A′| − 2)-flat.

Defintion: We say that A is non-degenerate if there is a proper
subset A′ ⊂ A is in general position.

Example: k = 2
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New supersaturation lemma

Theorem (S.-Zeng 2023)

Let k ≥ 2 be even. Any subset A ⊂ [n]D of size nD−γ , contains at

least cn(k+1)D−(k+2)γ non-degenerate (k + 2)-tuples that lie on a

k-flat.

=D[n]
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New supersaturation lemma
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= AD[n]
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Let k ≥ 2 be even. Any subset A ⊂ [n]D of size nD−γ , contains at

least cn(k+1)D−(k+2)γ non-degenerate (k + 2)-tuples that lie on a

k-flat.

= AD[n]

Andrew Suk (UC San Diego) Higher dimensional point sets in general position



New supersaturation lemma

Theorem (S.-Zeng 2023)

Let k ≥ 2 be even. Any subset A ⊂ [n]D of size nD−γ , contains at

least cn(k+1)D−(k+2)γ non-degenerate (k + 2)-tuples that lie on a

k-flat.

Theorem (Balogh-Solymosi 2018)

Any subset A ⊂ [n]D of size nD−γ , contains at least

cn(k+1)D−(D+1)γ (k + 2)-tuples that lie on a k-flat.
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New supersaturation lemma

Theorem (S.-Zeng 2023)

Let k ≥ 2 be even. Any subset A ⊂ [n]D of size nD−γ, contains at

least cn(k+1)D−(k+2)γ non-degenerate (k + 2)-tuples that lie on a

k-flat.

Proof: A ⊂ [n]D , |A| = nD−γ . k ≥ 2 is even.

Set r = (k + 2)/2

Ar = {a1 + · · ·+ ar : ai ∈ A} ⊂ [rn]D .
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New supersaturation lemma

Theorem (S.-Zeng 2023)

Let k ≥ 2 be even. Any subset A ⊂ [n]D of size nD−γ, contains at

least cn(k+1)D−(k+2)γ non-degenerate (k + 2)-tuples that lie on a

k-flat.

Proof: A ⊂ [n]D , |A| = nD−γ . k ≥ 2 is even.

Set r = (k + 2)/2

Ar = {a1 + · · ·+ ar : ai ∈ A} ⊂ [rn]D .

a1 + · · ·+ ar = a′1 + · · ·+ a′r ,

(k + 2)-tuple on a k-flat.
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New supersaturation lemma

Proof: A ⊂ [n]D , |A| = nD−γ . k ≥ 2 is even, r = (k + 2)/2.

Ar = {a1 + · · ·+ ar : ai ∈ A} ⊂ [rn]D .
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New supersaturation lemma

Proof: A ⊂ [n]D , |A| = nD−γ . k ≥ 2 is even, r = (k + 2)/2.

Ar = {a1 + · · ·+ ar : ai ∈ A} ⊂ [rn]D .

Ar (v) = {a1 + · · ·+ ar = v : ai ∈ A} ⊂ Ar
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New supersaturation lemma

Proof: A ⊂ [n]D , |A| = nD−γ . k ≥ 2 is even, r = (k + 2)/2.

Ar = {a1 + · · ·+ ar : ai ∈ A} ⊂ [rn]D .

Ar (v) = {a1 + · · ·+ ar = v : ai ∈ A} ⊂ Ar

#{a1 + · · ·+ ar = a′1 + · · · + a′r} ≥
∑

v∈[rn]D

(|Ar (v)|
2

)

.
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New supersaturation lemma

Proof: A ⊂ [n]D , |A| = nD−γ . k ≥ 2 is even, r = (k + 2)/2.

Ar = {a1 + · · ·+ ar : ai ∈ A} ⊂ [rn]D .

Ar (v) = {a1 + · · ·+ ar = v : ai ∈ A} ⊂ Ar

#{a1 + · · ·+ ar = a′1 + · · · + a′r} ≥
∑

v∈[rn]D

(|Ar (v)|
2

)

.

≥ (rn)D
(

∑
v
|Ar (v)|

(rn)D

2

)

≥ (rn)D
( |Ar |

(rn)D

2

)

≥ |Ar |2
4(rn)D

≥ cn(k+1)D−(k+2)γ
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New supersaturation lemma

Proof: A ⊂ [n]D , |A| = nD−γ . k ≥ 2 is even, r = (k + 2)/2.

Ar = {a1 + · · ·+ ar : ai ∈ A} ⊂ [rn]D .

#{a1 + · · ·+ ar = a′1 + · · ·+ a′r} ≥ cn(k+1)D−(k+2)γ
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New supersaturation lemma

Proof: A ⊂ [n]D , |A| = nD−γ . k ≥ 2 is even, r = (k + 2)/2.

Ar = {a1 + · · ·+ ar : ai ∈ A} ⊂ [rn]D .

#{a1 + · · ·+ ar = a′1 + · · ·+ a′r} ≥ cn(k+1)D−(k+2)γ

For D large, at least half corresponds to non-degenerate
(k + 2)-tuples on a k-flat.
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New supersaturation lemma

Proof: A ⊂ [n]D , |A| = nD−γ . k ≥ 2 is even, r = (k + 2)/2.

Ar = {a1 + · · ·+ ar : ai ∈ A} ⊂ [rn]D .

#{a1 + · · ·+ ar = a′1 + · · ·+ a′r} ≥ cn(k+1)D−(k+2)γ

For D large, at least half corresponds to non-degenerate
(k + 2)-tuples on a k-flat.

Theorem (S.-Zeng 2023)

Let k ≥ 2 be even. Any subset A ⊂ [n]D of size nD−γ , contains at

least cn(k+1)D−(k+2)γ non-degenerate (k + 2)-tuples that lie on a

k-flat.
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Hypergraph container method

Theorem (S.-Zeng 2023)

Let k ≥ 2 be even. Any subset A ⊂ [n]D of size nD−γ , contains at

least cn(k+1)D−(k+2)γ non-degenerate (k + 2)-tuples that lie on a

k-flat.

Apply the hypergraph container lemma and the probabilistic
method.
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Hypergraph container method

Theorem (S.-Zeng 2023)

Let k ≥ 2 be even. Any subset A ⊂ [n]D of size nD−γ , contains at

least cn(k+1)D−(k+2)γ non-degenerate (k + 2)-tuples that lie on a

k-flat.

Apply the hypergraph container lemma and the probabilistic
method.

Theorem (S.-Zeng, 2023)

Let d ≥ 3. When d is odd,

αd (N) < N
1
2
+ 1

2(d+1)
+o(1)

.

When d is even,

αd (N) < N
1
2
+ 1

d−1
+o(1).
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Hypergraph container lemma

αd (N) < N
1
2
+ 1

2d
+o(1), d is odd.

Set k = d − 1, k is even.
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Hypergraph container lemma

αd (N) < N
1
2
+ 1

2d
+o(1), d is odd.

Set k = d − 1, k is even.

Hypergraph: H = (V ,E )
V = [n]D points in R

D

E = (k + 2)-tuples on a k-flat (non-degenerate)

=D[n]
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Hypergraph container lemma

αd (N) < N
1
2
+ 1

2d
+o(1), d is odd.

Set k = d − 1, k is even.

Hypergraph: H = (V ,E )
V = [n]D points in R

D

E = (k + 2)-tuples on a k-flat (non-degenerate)

=D[n]
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Hypergraph container lemma

αd (N) < N
1
2
+ 1

2d
+o(1), d is odd.

Set k = d − 1, k is even.

Hypergraph: H = (V ,E )
V = [n]D points in R

D

E = (k + 2)-tuples on a k-flat (non-degenerate)

=D[n]
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Hypergraph container lemma

αd (N) < N
1
2
+ 1

2d
+o(1), d is odd.

Set k = d − 1, k is even.

Hypergraph: H = (V ,E )
V = [n]D points in R

D

E = (k + 2)-tuples on a k-flat (non-degenerate)

=D[n]
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Hypergraph container lemma

Theorem (Saxton-Thomason, Balogh-Morris-Samotij 2015)

Given H as above and ǫ, τ ∈ (0, 1/2), if τ is sufficiently small and

∆(H, τ) < c ′
k
ǫ, then there exists a family of containers C such that

Every independent set is in a C ∈ C,
|C| < 2c|V |τ log(1/ǫ) log(1/τ).

For each C ∈ C, H[C ] has at most ǫ|E | edges.

=D[n]
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Hypergraph container lemma

Theorem (Saxton-Thomason, Balogh-Morris-Samotij 2015)

Given H as above and ǫ, τ ∈ (0, 1/2), if τ is sufficiently small and

∆(H, τ) < c ′
k
ǫ, then there exists a family of containers C such that

Every independent set is in a C ∈ C,
|C| < 2c|V |τ log(1/ǫ) log(1/τ).

For each C ∈ C, H[C ] has at most ǫ|E | edges.

=D[n]
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Supersaturation + Container Lemma

Hypergraph
V = [n]D points in R

D

E = (k + 2)-tuples on a k-flat (non-degenerate)

=D[n]

|C| < 2(c/α)n
D

k+1
+α

log2 n |E [C ]| < ǫ|E | ǫ = n−α
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Supersaturation + Container Lemma

Hypergraph
V = [n]D points in R

D

E = (k + 2)-tuples on a k-flat (non-degenerate)

=D[n]

|C| < 2(c/α)n
D

k+1
+α

log2 n |E [C ]| < ǫ|E | ǫ = n−α
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Supersaturation + Container Lemma

Hypergraph
V = [n]D points in R

D

E = (k + 2)-tuples on a k-flat (non-degenerate)

=D[n]

If |C | > n
k

k+1
D+k , repeat the container lemma in H[C ].
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Supersaturation + Container Lemma

Hypergraph
V = [n]D points in R

D

E = (k + 2)-tuples on a k-flat (non-degenerate)

=D[n]

If |C | > n
k

k+1
D+k , repeat the container lemma in H[C ].
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Supersaturation + Container Lemma

Hypergraph
V = [n]D points in R

D

E = (k + 2)-tuples on a k-flat (non-degenerate)

=D[n]

C′ ≤ |C|2(c/α)n
D

k+1
+α

log2 n ≤ 2(2c/α)n
D

k+1
+α

log2 n
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Supersaturation + Container Lemma

Hypergraph
V = [n]D points in R

D

E = (k + 2)-tuples on a k-flat (non-degenerate)

=D[n]

|C′| ≤ 2(2c/α)n
D

k+1
+α

log2 n |E [C ′]| < ǫ|E [C ]| < ǫ2|E |
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Supersaturation + Container Lemma

Hypergraph
V = [n]D points in R

D

E = (k + 2)-tuples on a k-flat (non-degenerate)

=D[n]

If |C ′| > n
k

k+1
D+k , repeat the container lemma in H[C ′].
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Supersaturation + Container Lemma

After i iterations:

|C(i)| ≤ 2((i+1)c/α)n
D

k+1
+α

log2 n |E [C (i)]| < ǫi+1|E | = n−(i+1)α|E |.
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Supersaturation + Container Lemma

After i iterations:

|C(i)| ≤ 2((i+1)c/α)n
D

k+1
+α

log2 n |E [C (i)]| < ǫi+1|E | = n−(i+1)α|E |.

After O(kD/α) iterations: All containers |C | < n
k

k+1
D+k . Indeed,

if |C | > n
k

k+1
D+k

Large < |E [C ]| < n−10kD |E |.

Andrew Suk (UC San Diego) Higher dimensional point sets in general position



Supersaturation + Container Lemma

After i iterations:

|C(i)| ≤ 2((i+1)c/α)n
D

k+1
+α

log2 n |E [C (i)]| < ǫi+1|E | = n−(i+1)α|E |.

After O(kD/α) iterations: All containers |C | < n
k

k+1
D+k . Indeed,

if |C | > n
k

k+1
D+k

Large < |E [C ]| < n−10kD |E |.
Total number of containers:

|C| ≤ 2(c
′/α2)n

D
k+1

+α

log2 n
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Supersaturation + Container Lemma

Hypergraph
V = [n]D points in R

D

E = (k + 2)-tuples on a k-flat (non-degenerate)

=D[n]

|C| < 2(c
′/α2)n

D

k+1
+α

log2 n |C | < n
k

k+1
D+k

Andrew Suk (UC San Diego) Higher dimensional point sets in general position



The probabilistic method

Pick a point with probability p = cn−
k

k+2
(D+2)

=D[n] p
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The probabilistic method

Pick a point with probability p = cn−
k

k+2
(D+2)

=D[n] p

E[#of points] = pnD .
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The probabilistic method

Pick a point with probability p = cn−
k

k+2
(D+2)

=D[n] p

E[#of points] = pnD .

E[#(k +3) point sets on a k-flat] < pk+3 ·O(n(k+1)D+2k ) <
pnD

2
.
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The probabilistic method

Pick a point with probability p = cn−
k

k+2
(D+2)

=D[n] p

E[#of points] = pnD .

E[#(k +3) point sets on a k-flat] < pk+3 ·O(n(k+1)D+2k ) <
pnD

2
.

E[# of indep sets of size m = cn
D

2k
+2α] < |C|

(

n
k

k+1
D+k

m

)

pm = o(1).
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The probabilistic method

Construction of P in R
D : No k + 3 points on a k-flat.

|P | = pnD

2
= cn−

k

k+2
(D+2)nD = cn

2(D−k)
k+2 = N.

α(P) < m = cn
D

k+1
+2α < O(N

k+2
2(k+1)

+α
).
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The probabilistic method

Construction of P in R
D : No k + 3 points on a k-flat.

|P | = pnD

2
= cn−

k

k+2
(D+2)nD = cn

2(D−k)
k+2 = N.

α(P) < m = cn
D

k+1
+2α < O(N

k+2
2(k+1)

+α
).

Projection: R
D → R

k+1 = R
d (d is odd)
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The probabilistic method

Construction of P in R
D : No k + 3 points on a k-flat.

|P | = pnD

2
= cn−

k

k+2
(D+2)nD = cn

2(D−k)
k+2 = N.

α(P) < m = cn
D

k+1
+2α < O(N

k+2
2(k+1)

+α
).

Projection: R
D → R

k+1 = R
d (d is odd)

P = N points in R
d
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The probabilistic method

Construction of P in R
D : No k + 3 points on a k-flat.

|P | = pnD

2
= cn−

k

k+2
(D+2)nD = cn

2(D−k)
k+2 = N.

α(P) < m = cn
D

k+1
+2α < O(N

k+2
2(k+1)

+α
).

Projection: R
D → R

k+1 = R
d (d is odd)

P = N points in R
d

No d + 2 on a hyperplane

Andrew Suk (UC San Diego) Higher dimensional point sets in general position



The probabilistic method

Construction of P in R
D : No k + 3 points on a k-flat.

|P | = pnD

2
= cn−

k

k+2
(D+2)nD = cn

2(D−k)
k+2 = N.

α(P) < m = cn
D

k+1
+2α < O(N

k+2
2(k+1)

+α
).

Projection: R
D → R

k+1 = R
d (d is odd)

P = N points in R
d

No d + 2 on a hyperplane

Every subset of size cN
1
2
+ 1

2d
+α contains d + 1 points on a

hyperplane.
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Main result

Theorem (S.-Zeng, 2023)

Let d ≥ 3. When d is odd,

αd (N) < N
1
2
+ 1

2d
+o(1).

When d is even,

αd (N) < N
1
2
+ 1

d−1
+o(1).
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Main result

Theorem (S.-Zeng, 2023)

Let d ≥ 3. When d is odd,

αd (N) < N
1
2
+ 1

2d
+o(1).

When d is even,

αd (N) < N
1
2
+ 1

d−1
+o(1).

Open problem: Close the gap

αd (N) ≥ Ω((N logN)1/d ).
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Back to supersaturation: open problem

Theorem (S.-Zeng 2023)

Let k ≥ 2 be even. Any subset A ⊂ [n]d of size nd−γ , contains at

least cn(k+1)d−(k+2)γ non-degenerate (k + 2)-tuples that lie on a

k-flat.

Question: Can we remove the even condition.
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Back to supersaturation: open problem

Theorem (S.-Zeng 2023)

Let k ≥ 2 be even. Any subset A ⊂ [n]d of size nd−γ , contains at

least cn(k+1)d−(k+2)γ non-degenerate (k + 2)-tuples that lie on a

k-flat.

Question: Can we remove the even condition.

Theorem (Balogh-Solymosi 2018)

Any subset A ⊂ [n]d of size nd−γ , contains at least cn2d−(d+1)γ

collinear triples.

Question: Better supersaturation result.
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Thank you!
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