
(3/23/08)Section 14.5

Directional derivatives and gradient vectors

Overview: The partial derivatives fx(x0, y0) and fy(x0, y0) are the rates of change of z = f(x, y) at

(x0, y0) in the positive x- and y-directions. Rates of change in other directions are given by directional

derivatives . We open this section by defining directional derivatives and then use the Chain Rule from

the last section to derive a formula for their values in terms of x- and y-derivatives. Then we study

gradient vectors and show how they are used to determine how directional derivatives at a point change

as the direction changes, and, in particular, how they can be used to find the maximum and minimum

directional derivatives at a point.

Topics:

• Directional derivatives

• Using angles of inclination

• Estimating directional derivatives from level curves

• The gradient vector

• Gradient vectors and level curves

• Estimating gradient vectors from level curves

Directional derivatives
To find the derivative of z = f(x, y) at (x0, y0) in the direction of the unit vector u = 〈u1, u2〉 in the

xy-plane, we introduce an s-axis, as in Figure 1, with its origin at (x0, y0), with its positive direction in

the direction of u, and with the scale used on the x- and y-axes. Then the point at s on the s-axis has

xy-coordinates x = x0 + su1, y = y0 + su2, and the value of z = f(x, y) at the point s on the s-axis is

F (s) = f(x0 + su1, y0 + su2). (1)

We call z = F (s) the cross section through (x0, y0) of z = f(x, y) in the direction of u.

{

x = x0 + su1

y = y0 + su2

Tangent line of slope

F ′(0) = Duf(x0, y0)

FIGURE 1 FIGURE 2
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If (x0, y0) 6= (0, 0), we introduce a second vertical z-axis with its origin at the point (x0, y0, 0) (the

origin on the s-axis) as in Figure 2. Then the graph of z = F (s) the intersection of the surface z = f(x, y)

with the sz-plane. The directional derivative of z = f(x, y) is the slope of the tangent line to this curve

in the positive s-direction at s = 0, which is at the point (x0, y0, f(x0, y0)). The directional derivative is

denoted Duf(x0, y0), as in the following definition.

Definition 1 The directional derivative of z = f(x, y) at (x0, y0) in the direction of the unit vector

u = 〈u1, u2〉 is the derivative of the cross section function (1) at s = 0:

Duf(x0, y0) =

[

d

ds
f(x0 + su1, y0 + su2)

]

s=0

. (2)

The Chain Rule for functions of the form z = f (x(t), y(t)) (Theorem 1 of Section 14.4) enables us

to find directional derivatives from partial derivatives.

Theorem 1† For any unit vector u = 〈u1, u2〉, the (directional) derivative of z = f(x, y) at (x0, y0) in

the direction of u is

Duf(x0, y0) = fx(x0, y0)u1 + fy(x0, y0)u2. (3)

Remember formula (3) as the following statement: the directional derivative of z = f(x, y) in the

direction of u equals the x-derivative of f multiplied by the x-component of u, plus the y-derivative of

f multiplied by the y-component of u.

Proof of Theorem 1: Definition (2) and the Chain Rule from the last section give

F ′(s) =
d

ds
[f(x0 + u1s, y0 + u2s)]

= fx(x0 + u1s, y0 + u2s)
d

ds
(x0 + u1s) + fy(x0 + u1s, y0 + u2s)

d

ds
(y0 + u2s)

= fx(x0 + u1s, y0 + u2s)u1 + fy(x0 + u1s, y0 + u2s)u2.

We set s = 0 to obtain (3):

Duf(x0, y0) = fx(x0, y0)u1 + fy(x0, y0)u2. QED

Example 1 Find the directional derivative of f(x, y) = −4xy− 1
4
x4− 1

4
y4 at (1,−1) in the direction

of the unit vector u = 〈 1
2

√
2,− 1

2

√
2〉 (Figure 3).

x−1 2

y

−1

−2

1

u =
〈

1
2

√
2,− 1

2

√
2
〉

1

s

FIGURE 3

†We assume in Theorems 1 through 5 of this section and their applications that the functions involved have continuous

first-order partial derivatives in open circles centered at all points (x, y) that are being considered.
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Solution We first find the partial derivatives,

fx(x, y) =
∂

∂x
(−4xy − 1

4
x4 − 1

4
y4) = −4y − x3

fy(x, y) =
∂

∂y
(−4xy − 1

4
x4 − 1

4
y4) = −4x − y3.

We set (x, y) = (1,−1) to obtain fx(1,−1) = −4(−1) − 13 = 3 and

fy(1,−1) = −4(1)− (−1)3 = −3. Then formula (3) with 〈u1, u2〉 = 〈 1
2

√
2,− 1

2

√
2〉 gives

Duf(1,−1) = fx(1, 1)u1 + fy(1, 1)u2

= 3( 1
2

√
2) + (−3)(− 1

2

√
2) = 3

√
2. �

Figures 4 and 5 show the geometric interpretation of Example 1. The line in the xy-plane through
(1,−1) in the direction of the unit vector u = 〈 1

2

√
2,− 1

2

√
2〉 has the equations

x = 1 + 1
2

√
2 s, y = −1 − 1

2

√
2 s

with distance s as parameter and s = 0 at (1,−1). Since f(x, y) = −4xy − 1
4
x4 − 1

4
y4, the cross section

of z = f(x, y) through (1, 1) in the direction of u is

F (s) = −4
(

1 + 1
2

√
2 s

)(

− 1 − 1
2

√
2 s

)

− 1
4

(

1 + 1
2

√
2 s

)4

− 1
4

(

− 1 − 1
2

√
2 s

)4

= 4
(

1 + 1
2

√
2 s

)2

− 1
2

(

1 + 1
2

√
2 s

)4

.

The graph of this function is shown in the sz-plane of Figure 4. The slope of its tangent line
at s = 0 is the directional derivative from Example 1. The corresponding cross section of the surface
z = f(x, y) is the curve over the s-axis drawn with a heavy line in Figure 5, and the directional derivative
is the slope of this curve in the positive s-direction at the point P = (1,−1, f(1,−1)) on the surface.

s2−4 −2

z

8
z = F (s)

P

Cross section of z = −4xy − 1
4
x4 − 1

4
y4

through (1,−1) in the

direction of u = 〈 1
2

√
2,− 1

2

√
2〉

z = −4xy − 1
4
x4 − 1

4
y4

FIGURE 4 FIGURE 5
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Example 2 What is the derivative of f(x, y) = x2y5 at P = (3, 1) in the direction toward
Q = (4,−3)?

Solution We first calculate the partial derivatives at the point in question. For f(x, y) = x2y5,

we have fx = 2xy5 and
fy = 5x2y4, so that fx(3, 1) = 2(3)(15) = 6, and fy(3, 1) = 5(32)(14) = 45.

To find the unit vector u in the direction from P = (3, 1) toward Q = (4,−3),

we first find the displacement vector
−→
PQ = 〈4 − 3,−3 − 1〉 = 〈1,−4〉. Next, we divide

by its length |−→PQ| =
√

12 + (−4)2 =
√

17 to obtain u = 〈u1, u2〉 =

−→
PQ

|−→PQ|
=

〈1,−4〉√
17

.

This formula shows that, u1 =
1√
17

and u2 =
−4√
17

. Consequently,

Duf(3, 1) = fx(3, 1)u1 + fy(3, 1)u2

= 6
(

1√
17

)

+ 45
( −4√

17

)

= − 174√
17

. �

Using angles of inclination
If the direction of a directional derivative is described by giving the angle α of inclination of the unit
vector u, then we can use the expression

u = 〈cosα, sin α〉 (4)

for u in terms of α to calculate the directional derivative (Figure 6).

x

y

θ

1

u = 〈cos θ, sin θ〉

x

y

2
3
π

1

1
2

1
2

√
3

u

FIGURE 6 FIGURE 7

Example 3 What is the derivative of h(x, y) = exy at (2, 3) in the direction at an angle of 2
3
π from

the positive x-direction?

Solution The partial derivatives are hx = exy ∂

∂x
(xy) = yexy and hy = exy ∂

∂y
(xy) = xexy and

their values at (2, 3) are hx(2, 3) = 3e6 and hy(2, 3) = 2e6.

The unit vector u with angle of inclination 2
3
π forms the hypotenuse of the

30◦-60◦-right triangle in Figure 7 whose base is 1
2

and height is 1
2

√
3. Therefore,

u = 〈u1, u2〉 with u1 = cos
(

2
3
π
)

= − 1
2

and u2 = sin
(

2
3
π
)

= 1
2

√
3, so that

Duh(2, 3) = fx(2, 3)u1 + fy(2, 3)u2

= 3e6
(

− 1
2

)

+ 2e6
(

1
2

√
3
)

= (− 3
2

+
√

3)e6. �



Section 14.5, Directional derivatives and gradient vectors p. 331 (3/23/08)

Estimating directional derivatives from level curves
We could find approximate values of directional derivatives from level curves by using the techniques of
the last section to estimate the x- and y-derivatives and then applying Theorem 1. It is easier, however,
to estimate a directional derivative directly from the level curves by estimating an average rate of change
in the specified direction, as in the next example.

Example 4 Figure 8 shows level curves of a temperature reading T = T (x, y) (degrees Celsius) of
the surface of the ocean off the west coast of the United States.(1) (a) Express the
rate of change toward the northeast of the temperature at point P in the drawing as a
directional derivative. (b) Find the approximate value of this rate of change.

FIGURE 8 FIGURE 9

Solution (a) If we suppose that the point P has coordinates (1240, 1000), as suggested by
Figure 8, and denote the unit vector pointing toward the northeast as u, then the
rate of change of the temperature toward the northeast at P is DuT (1240, 1000).

(b) We draw an s-axis toward the northeast in the direction of u with its origin at P
and with the same units as used on the x- and y-axes (Figure 9). This axis crosses the
level curve T = 18◦C at a point just below P and crosses the level curve T = 17◦C
at a point just above it. The change in the temperature from the lower to the upper
point is ∆T = 17◦ − 18◦ = −1◦. We use the scales on the x- and y-axes to determine
that s increases by approximately ∆s = 200 miles from the lower point to the upper
point. Consequently, the rate of change of T at P in the direction of the positive s-axis

is approximately
∆T

∆s
=

−1

200
= −0.005 degrees per mile. �

(1)Data adapted from Zoogeography of the Sea by S. Elkman, London: Sidgwich and Jackson, 1953, p. 144.
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The gradient vector
The formula

Duf(x0, y0) = fx(x0, y0) u1 + fy(x0, y0) u2 (5)

from Theorem 1 for the derivative of f at (x0, y0) in the direction of the unit vector u = 〈u1, u2〉 has the
form of the dot product of u with the vector 〈fx, fy〉 at (x0, y0). This leads us to define the latter to be

the gradient vector of f , which is denoted ∇f .†

Definition 2 The gradient vector of f(x, y) at (x0, y0) is

∇f(x0, y0) = 〈fx(x0, y0), fy(x0, y0)〉. (6)

The gradient vector (6) is drawn as an arrow with its base at (x0, y0). Because its length is a
derivative (a rate of change) rather than a distance, its length can be measured with any convenient
scale. We will, however, use the scales on the coordinate axes whenever possible.

Example 5 Draw ∇f(1, 1),∇f(−1, 2), and ∇f(−2,−1) for f(x, y) = x2y. Use the scale on the x-
and y-axes to measure the lengths of the arrows.

Solution We calculate ∇f(x, y) =
〈

∂

∂x
(x2y),

∂

∂y
(x2y)

〉

= 〈2xy, x2〉, and then

∇f(1, 1) = 〈2(1)(1), 12〉 = 〈2, 1〉
∇f(−1, 2) = 〈2(−1)(2), (−1)2〉 = 〈−4, 1〉

∇f(−2,−1) = 〈2(−2)(−1), (−2)2〉 = 〈4, 4〉.

These vectors are drawn in Figure 10. �

FIGURE 10

With Definition 2, formula (3) for the directional derivative becomes

Duf(x0, y0) = ∇f(x0, y0) · u. (7)

This representation is useful because we know from Theorem 1 of Section 13.2 that the dot product
A · B of two nonzero vectors equals the product |A||B| cos θ of their lengths and the cosine of an angle
θ between them. Because u is a unit vector, its length |u| is 1 and we obtain the following theorem.

†The symbol ∇ is called “nabla” or “del.”
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Theorem 2 If ∇f(x0, y0) is not the zero vector, then for any unit vector u,

Duf(x0, y0) = |∇f(x0, y0)| cos θ (8)

where θ is an angle between ∇f and u (Figure 11). If ∇f(x0, y0) is the zero vector, then Du(x0, y0) = 0
for all unit vectors u.

θ u

∇f

FIGURE 11

Look closely at formula (8). If the point (x0, y0) is fixed, then |∇f(x0, y0)| is a positive constant
and as θ varies, cos θ varies between 1 and −1: cos θ equals 1 when ∇f(x0, y0) and u have the same
direction, equals −1 when ∇f(x0, y0) and u have opposite directions and θ is a straight angle, and is
zero when ∇f(x0, y0) and u are perpendicular so that θ is a right angle. This establishes the next result.

Theorem 3 Suppose that ∇f(x0, y0) is not the zero vector. Then (a) the maximum directional
derivative of f at (x0, y0) is |∇f(x0, y0)| and occurs for u with the same direction as ∇f(x0, y0), (b) the
minimum directional derivative of f at (x0, y0) is −|∇f(x0, y0)| and occurs for u with the opposite
direction as ∇f(x0, y0), and (c) the directional derivative of f at (x0, y0) is zero for u with either of
the two directions perpendicular to ∇f(x0, y0).

Example 6 (a) What is the maximum directional derivative of g(x, y) = y2e2x at (2,−1) and in
the direction of what unit vector does it occur? (b) What is the minimum directional
derivative of g at (2,−1) and in the direction of what unit vector does it occur?

Solution (a) We find the gradient vector:

∇g(x, y) =
〈

∂

∂x
(y2e2x),

∂

∂y
(y2e2x)

〉

= 〈y2e2x ∂

∂x
(2x), 2ye2x〉 = 〈2y2e2x, 2ye2x〉.

This formula yields ∇g(2,−1) = 〈2e4,−2e4〉. By Theorem 3, the maximum directional

derivative is |∇g(2,−1)| = |〈2e4,−2e4〉| =
√

(2e4)2 + (−2e4) =
√

8 e4. It occurs in the
direction of the unit vector,

u =
∇g(2,−1)

|∇g(2,−1)| =
〈2e4,−2e4〉
|〈2e4,−2e4〉|

=
〈1,−1〉√

2
.

(b) The minimum directional derivative is −|∇g(2,−1)| = −
√

8 e4 and occurs in the

direction of the unit vector u = −〈1,−1〉/
√

2 = 〈−1, 1〉/
√

2. �
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Example 7 Give the two unit vectors u such that the function z = g(x, y) of Example 6 has zero
derivatives at (2,−1) in the direction of u.

Solution The derivative is zero in the two directions perpendicular to the unit vector
〈1,−1〉√

2
that has the direction of the gradient. Interchanging the components and multiplying
one or the other of the components by −1 gives the perpendicular unit vectors. The
directional derivative is zero in the directions of u = 〈−1,−1〉/

√
2 and u = 〈1, 1〉/

√
2.

�

Gradient vectors and level curves
If the gradient vector of z = f(x, y) is zero at a point, then the level curve of f may not be what we would
normally call a “curve” or, if it is a curve it might not have a tangent line at the point. The gradient
of f = x2 + y2, for example, is ∇f = 〈2x, 2y〉. It is the zero vector at the origin and the level curve

x2 + y2 = 0 at the origin in Figure 12 consists of the single point (0, 0). The function g = x2 − y3, on

the other hand, has the gradient vector ∇g = 〈2x,−3y2〉, which is also the zero vector at the origin. Its

level curve x2 − y3 = 0 through the origin is the curve y = x2/3 in Figure 13, but it has a cusp and no
tangent line at the origin.

x1−1

y

1

−1

x2 + y2 = 0

x1−1

y

1

x2 − y3 = 0

FIGURE 12 FIGURE 13

If, on the other hand, the gradient vector of a function is not zero at a point, then its level curve
through that point is a curve with a tangent line at the point, as is established in the next theorem.

Theorem 4 (The Implicit Function Theorem) If ∇f(x0, y0) is not the zero vector, then a portion
of the level curve of z = f(x, y) through (x0, y0) is a parameterized curve with a nonzero velocity vector
and therefore a tangent line at (x0, y0).

This theorem is proved in advanced courses. We use it to establish the next result.
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Theorem 5 If ∇f(x0, y0) is not zero, then ∇f(x0, y0) is perpendicular to the level curve of f through
(x0, y0) (Figure 14).

(x0, y0)

∇f(x0, y0)

f = c

FIGURE 14

Proof: Suppose that ∇f(x0, y0) is not the zero vector. By Theorem 4, a portion of the level curve of f
through (x0, y0) has parametric equations x = x(t), y = y(t) with x(t0) = x0 and y(t0) = y0 and a nonzero
velocity vector v(t0) = 〈x′(t0), y

′(t0)〉. Then for t near t0, the composite function z = f(x(t), y(t)) has
the constant value c, and its derivative

d

dt
[f(x(t), y(t))] = fx(x(t), y(t))x′(t) + fy(x(t), y(t))y′(t)

is zero. Setting t = t0 gives

0 = fx(x0, y0) x′(t0) + fy(x0, y0) y′(t0) = ∇f(x0, y0) · v(t0).

Since v(t0) is a nonzero velocity vector tangent to the level curve, the last equation shows that ∇f(x0, y0)
is perpendicular to the level curve, as is stated in the theorem. QED

Example 8 (a) Draw the gradient vector of f(x, y) = xy at (1, 2) and the level curve of f through
that point. (b) Draw ∇f(−3, 1) and the level curve of f through (−3, 1).

Solution (a) Because ∇f = ∇(xy) =
〈

∂

∂x
(xy),

∂

∂y
(xy)

〉

= 〈y, x〉, the gradient at (1, 2) is 〈2, 1〉.
Also, because xy = 2 at (1, 2), the level curve is xy = 2 or y = 2/x. The curve and
vector are drawn in Figure 15. Notice that the gradient vector is perpendicular to the
level curve.

(b) ∇f equals 〈1,−3〉 at (−3, 1). Moreover, f(−3, 1) equals (−3)(1) = −3, so the level
curve is xy = −3, which has the equivalent formula y = −3/x. This curve and gradient
vector are shown in Figure 16. �

x1

y

2

xy = 2

∇f(1, 2) = 〈2, 1〉

x

y

1

xy = −3

−3

∇f(−3, 1) = 〈1,−3〉

FIGURE 15 FIGURE 16
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Estimating gradient vectors from level curves
To estimate the gradient of a function from its level curves, we could estimate the x- and y-derivatives.
We want, however, to emphasize the gradient vector’s geometric properties, so in the next example we
will instead estimate the length and direction of the gradient vector directly from the level curves.

Example 9 Level curves of a function z = f(x, y) are shown in Figure 17. Find the approximate
length and direction of ∇f(3, 2) and then draw it with the level curves, using the scales
on the axes to measure the length of the arrow.

FIGURE 17 FIGURE 18 FIGURE 19

Solution We draw an approximate tangent line at (3, 2) to the level curve of f through that point
and a perpendicular s-axis with its positive side in the direction in which f increases, as
in Figure 18. By Theorem 5, ∇f(3, 2) points in the direction of the positive s-axis and
by Theorem 3, its length is the rate of change of f at (3, 2) in that direction. The change
in f on the s-axis from the level curve f = 5 at (3, 2) to point P on the level curve
f = 6 above it is ∆f = 6 − 5 = 1, and the distance between the level curves along the

s-axis is ∆s ≈ 1
2
. Therefore, for u in the positive s-direction, Du(3, 2) ≈ ∆f

∆s
=

1
1
2

= 2.

Since Duf(3, 2) = |∇f(3, 2)| for this vector u, we draw ∇f(3, 2) as an arrow of length
2 pointing in the direction of the positive s-axis, as in Figure 19. �

Interactive Examples 14.5
Interactive solutions are on the web page http//www.math.ucsd.edu/ ãshenk/.†

1. Find the derivative of g(x, y) = x2y3 at (1,−1) in the direction toward the point (2, 2).

2. Level curves of z = K(x, y) are shown in Figure 20. Find the approximate derivative of K at
(5, 5) in the direction toward the origin.

40

30

20
10

0

x5 10 15 20 25

y

5

10

15

Level curves

of z = K(x, y)

FIGURE 20

†In the published text the interactive solutions of these examples will be on an accompanying CD disk which can be run by

any computer browser without using an internet connection.
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3. What is the gradient vector of f(x, y) = 2x − ln y at (0, 3)?

4. (a) What is the maximum directional derivative of f = x sin y at (5, 1
3
π)? (b) What is the unit

vector in the direction of the maximum directional derivative?

5. The directional derivative of g = x2−3y3 at (3, 2) is zero in two directions. Give the unit vectors
in those directions.

6. Figure 21 shows the level curves of f(x, y) = y − 1
4
x2 through the points (0, 0), (−2,−1), and

(2,3). Draw ∇f at those points, using the scales on the axes to measure its components.

−2
0

2

x4−4

y

4

FIGURE 21

7. Figure 22 shows level curves of a function z = G(x, y). Add the approximate gradient vector
∇G(7, 4) to the drawing, using the scales on the axes to measure its components.

0

5

10

x2 4 6 8 10

y

2

4

6

FIGURE 22

Exercises 14.5
AAnswer provided. OOutline of solution provided. CGraphing calculator or computer required.

CONCEPTS:

1. What are the maximum and minimum directional derivatives of z = f(x, y) at (x0, y0) if the
gradient ∇f(x0, y0) is the zero vector?

2. How are the directional derivatives of a function (a) in the positive x-direction, (b) in the
positive y-direction, (c) in the negative x-direction, and (d) in the negative y-direction related
to the x- and y-derivatives?
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3. Unit vectors u = 〈u1, u2〉 are required in the formula for the derivative of z = f(x, y) at (x0, y0)
in the direction of u. What would you get if a vector u of length 2 were used instead, as in
Figure 23?

FIGURE 23

4. How does the gradient vector of g(x, y) = 2xy at (1, 2) differ from the gradient vector of
f(x, y) = xy at (1, 2) in Figure 15?

BASICS:

5.O What is the derivative of f = x2y − xy3 at (3,−2) in the direction toward (5, 6)?

6.O What is the derivative of g = sin(xy) at ( 3
4
, π) in the direction of the unit vector u = (−i+2j)/

√
5?

7. What is the derivative of h = x2e2y at (4, 3) in the direction of the (nonunit) vector 2i− 3j?

8. What is the derivative of k = ln(x2 − y2) at (4, 1) in the direction toward (4,−5)?

9.O Figure 24 shows level curves of z = g(x, y). Find the approximate derivative of g at (−1, 1) in
the direction toward (0,−2).

Level curves of z = g(x, y) Level curves of z = h(x, y)

FIGURE 24 FIGURE 25

10. Figure 25 shows level curves of z = h(x, y). What is the approximate derivative of h at (50, 30)
in the direction of the vector 〈−5,−2〉?
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In Exercises 11 through 14 find the gradients of the given functions at the given points.

11.O The gradient of f(x, y) = ln(xy) at (5, 10)

12.A The gradient of g(x, y) = x5y20 at (−1, 1)

13. The gradient of h(x, y) = x3y2 − y3x2 at (2,−3)

14. The gradient of k(x, y) = (x2 − y2)3/2 at (5, 4)

15.O What is the maximum directional derivative of z = x5 + y3 at (1, 5)? Give the unit vector in the
direction of the maximum derivative.

16.A What is the minimum directional derivative of z = x5e4y at (1, 0)? What is the unit vector in
the direction of the minimum derivative?

17.O Give unit vectors in the directions in which the directional derivative of f(x, y) = x + sin(5y) at
(2, 0) are zero.

18. Give unit vectors in the directions in which the directional derivative of z = ex+3y at (2, 5) are
zero.

19.A (a) Draw and label the level curves of g(x, y) = 1
2
x2 + 1

2
y2 through the points (1, 1), (1,−2), and

(−3,−1). (b) draw ∇g at those points, using the scales on the axes to measure its components.

20. Draw the level curve k(x, y) = 2 of k(x, y) = y +sin x and ∇k(x, y) at four points on it. Describe
how ∇k varies along the curve.

21. Draw the level curve of L(x, y) = ln(2y − x) through (2, 2) and ∇L(x, y) at four points on it.

22.O Figure 26 shows level curves of the depth (feet) of the ocean in the Monterey Canyon off the coast
of California.(2) What is the approximate rate of change of the depth with respect to distance at
P in the direction of the s-axis?

FIGURE 26 FIGURE 27

23. Figure 27 shows level curves of the elevation (meters) of the Greenland icecap above sea level.(3)

What is the approximate rate of change of the elevation with respect to distance at the point P
in the direction of the positive s-axis?

(2)Adapted from Submarine Canyons and Other Sea Valleys by F. Shepard and R. Dill, Skokie, IL: Rand McNally,

1966, p. 82
(3)Adapted from Introduction to Physical Geography by A. Strahler, New York, NY: John Wiley & Sons, 1970, p. 343
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24. Figure 28 shows level curves of the intensity I = I(x, y) (thousand degrees Kelvin) of radio signals
from the portion of the sky near the Crab Nebula shown in Figure 29.(4) What is the approximate
directional derivative of I at the point P in the direction of the vector u?

Intensity of radio signals The Crab Nebula in

with wavelength 21.3 cm. the constellation Taurus

FIGURE 28 FIGURE 29

25. Figure 30 shows the gradient of z = f(x, y) at three points with the lengths of the arrows measured

by the scales on the axes. Give the values of (aO) fx(5,−1), (bA) fy(3, 3), (cA) fx(2, 1),

(d) fy(2, 1), (eO) Duf(2, 1) with u = 〈1, 1〉/
√

2, and (f) Duf(3, 3) with u = 〈 3
5
, 4
5
〉.

x1

y

4

2

∇f(3, 3)

∇f(2, 1)

∇f(5,−1)
FIGURE 30

(4)Adapted from The Radio Universe, 3rd Edition by J. Hey, ???: Pergamon Books, Ltd, 1970, p. 157
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EXPLORATION:

26.O Find the approximate x- and y-components of ∇f(2, 1) for the function z = f(x, y) whose level
curves are shown in Figure 31.

FIGURE 31 FIGURE 32

27.A Find the approximate x- and y-components of ∇g(2, 2) for the function z = g(x, y) whose level
curves are shown in Figure 31.

28. Find the approximate x- and y-components of ∇h(30, 30) for the function z = h(x, y) whose level
curves are shown in Figure 33.

FIGURE 33

In each of Problems 29 through 31: (a) Find a formula for the cross section F (s) = f(x0 +su1, y0 +su2)
of the function z = f(x, y) through a point (x0, y0) in the direction of the unit vector u = 〈u1, u2〉.
(b) Use a directional derivative to calculate the slope of the tangent line to the cross section at s = 0.

C(c) Generate the graph of the cross section and its tangent line on a calculator or computer and copy
them on your paper.

29.A The cross section of f(x, y) = x + sin y + 2 through (0, 0) in the direction of u = 〈 3
5
, 4
5
〉.

30. The cross section of f(x, y) = xey through (0, 0) in the direction of u =
〈3, 1〉√

10
.

31. The cross section of f(x, y) = xy2 through (2, 2) in the direction of u =
〈1, 1〉√

2
.

(End of Section 14.5)


