Super-approximation
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 What is super-approximation? 1st try.</td>
<td>5</td>
</tr>
<tr>
<td>1.1 Rough description of strong approximation</td>
<td>5</td>
</tr>
<tr>
<td>1.2 Expanders and super-approximation</td>
<td>7</td>
</tr>
<tr>
<td>1.3 Exercises</td>
<td>8</td>
</tr>
<tr>
<td>2 Random-walks on a graph and expanders</td>
<td>13</td>
</tr>
<tr>
<td>2.1 Basics of random-walks on a finite graph</td>
<td>13</td>
</tr>
<tr>
<td>2.2 Discrete Laplacian</td>
<td>17</td>
</tr>
<tr>
<td>2.3 Finding good cuts</td>
<td>18</td>
</tr>
<tr>
<td>2.4 Discrete isoperimetric inequalities</td>
<td>20</td>
</tr>
<tr>
<td>2.5 Exercises</td>
<td>22</td>
</tr>
</tbody>
</table>
Chapter 1

What is super-approximation? 1st try.

1.1 Rough description of strong approximation

To understand the origin of the phrase *super-approximation*, we start with briefly formulating *strong approximation*. Let’s start with the case of $	ext{SL}_2$, the set of two-by-two matrices with entries in a given unital commutative ring and determinant 1. Strong approximation addresses questions of the following form.

Question 1. Does the residue module n map $\pi_n : \mathbb{Z} \to \mathbb{Z}/n\mathbb{Z}$ induces a surjective map from $\text{SL}_2(\mathbb{Z})$ to $\text{SL}_2(\mathbb{Z}/n\mathbb{Z})$?

In Exercise 3, you can find one approach for giving an affirmative answer to this question. Notice that for every unital commutative ring R, $\text{SL}_2(R)$ can be identified with $V(R) := \{(a, b, c, d) \in R^4 | ad - bc = 1\}$. Question 1 is equivalent to asking if every solution of $ad - bc = 1$ in $\mathbb{Z}/n\mathbb{Z}$ has a lift to a solution of this equation in \mathbb{Z}.

One can think about Question 1 in terms of transitivity of certain subgroups of the group of automorphism of V as well. As you can see in Exercise 2, $\text{SL}_2(\mathbb{Z})$ is generated by $\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$ and $\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$. This means

$$(a, b, c, d) \mapsto (a \pm b, b, c \pm d, d) \quad \text{and} \quad (a, b, c, d) \mapsto \pm(b, -a, d, -c)$$

induce a transitive action on $V(\mathbb{Z})$. The strong approximation is equivalent to saying that these maps induce a transitive action on $V(\mathbb{Z}/n\mathbb{Z})$ for every positive integer n.

Using the reduced row echelon process, one can show a similar result for $\text{SL}_m(\mathbb{Z})$ for $m \geq 3$. This method is essentially based on using unipotent elements (u is called unipotent if all of its eigenvalues are 1). Following the same ideas, one can prove a similar result for symplectic groups. Let’s recall that for every unital commutative ring R,

$$\text{Sp}_{2n}(R) = \left\{ \gamma \in \text{SL}_{2n}(R) \mid \gamma \begin{pmatrix} 0 & I \\ -I & 0 \end{pmatrix} \gamma^t = \begin{pmatrix} 0 & I \\ -I & 0 \end{pmatrix} \right\}.$$

This means $\pi_m : \text{Sp}_{2n}(\mathbb{Z}) \to \text{Sp}_{2n}(\mathbb{Z}/m\mathbb{Z})$ is surjective.
Next, we discuss that a similar statement does not hold for \(\text{PGL}_2 \). Let’s define \(\text{PGL}_2(R) := \text{GL}_2(R)/R^\times I \) where \(R^\times \) is the group of units of \(R \). Then
\[
\overline{\det} : \text{PGL}_2(R) \to R^\times/(R^\times)^2, \quad \overline{\det}(\gamma R^\times I) := \det(\gamma)(R^\times)^2
\]
is a well-defined surjective group homomorphism. Hence for every two distinct primes \(p \) and \(q \), \(\pi_{pq} : \text{PGL}_2(\mathbb{Z}) \to \text{PGL}_2(\mathbb{Z}/pq\mathbb{Z}) \) is not surjective as
\[
|\mathbb{Z}^\times| = 2 \quad \text{and} \quad |(\mathbb{Z}/pq\mathbb{Z})^\times/((\mathbb{Z}/pq\mathbb{Z})^\times)^2| = 4.
\]
In technical terms, the big difference between \(\text{SL}_2 \) and \(\text{PGL}_2 \) is that \(\text{SL}_2 \) is simply-connected and \(\text{PGL}_2 \) is not. Notice that for every algebraically closed field \(F \),
\[
1 \to \mu_2(F) \to \text{SL}_2(F) \to \text{PGL}_2(F) \to 1
\]
is a short exact sequence where \(\mu_2 := \{ x \in R | x^2 = 1 \} \). Moreover \(\mu_2(F) \) is a finite central subgroup. A group homomorphism with these properties is called a central isogeny (at least in characteristic zero). A(n) (algebraic) group which does not have a non-trivial (algebraic) isogeny is called a simply-connected (algebraic) group. For instance, \(\text{SL}_n \) and \(\text{Sp}_{2n} \) are simply connected algebraic groups, but \(\text{PGL}_n \) is not a simply connected algebraic group. Here we take a rudimentary approach and say that an algebraic group is a group which consists of solutions of certain polynomial equations and the group operations can be given by polynomial maps. Now we can formulate a version of strong approximation (due to Eichler, Kneser, and Platonov):

Theorem 2 (Strong approximation: the \(S \)-arithmetic case). Suppose \(G \) is a simply-connected algebraic group defined by polynomials with coefficients in \(\mathbb{Z} \). Suppose \(G(\mathbb{C}) \) is a product of almost simple groups (we say \(G \) is semisimple). Assume that \(G(\mathbb{Z}[1/q_0]) \) is an infinite group. Then for every integer \(n \) with large enough prime factors the residue modulo \(n \) congruence map
\[
\pi_n : G(\mathbb{Z}[1/q_0]) \to G(\mathbb{Z}/n\mathbb{Z})
\]
is surjective.

Next we want to see what happens if we restrict \(\pi_n \) to a subgroup \(\Gamma \) of \(G(\mathbb{Z}[1/q_0]) \). Can we still get the entire \(G(\mathbb{Z}/n\mathbb{Z}) \) (at least for integers \(n \) with large prime factors)?

We make one important observation: if there is an integer polynomial map \(f : \mathbb{Q}(\mathbb{C}) \to \mathbb{C} \) such that \(f(G(\mathbb{Z}[1/q_0])) \neq 0 \) but \(f(\Gamma) = 0 \), then it is not possible for \(\pi_p(\Gamma) = G(\mathbb{Z}/p\mathbb{Z}) \) to hold for an arbitrarily large prime \(p \). This is the case, because \(f(G(\mathbb{Z}[1/q_0])) \neq 0 \) implies that for a large enough prime \(p \), there is \(\lambda \in G(\mathbb{Z}[1/q_0]) \) such that \(\pi_p(f(\lambda)) \neq 0 \), and so \(f(\pi_p(\lambda)) \neq 0 \). On the other hand, \(f(\pi_p(\Gamma)) = 0 \). Therefore \(\pi_p(\lambda) \notin \pi_p(\Gamma) \). We refer to this type of limitations as an algebraic obstruction.

If we refer to common solutions of a family of polynomials as closed sets, then to avoid the above algebraic obstruction we have to assume that the smallest closed subset of \(G \) which contains \(\Gamma \) is \(G \). We refer to the topology given by these closed sets as the Zariski topology of \(G \). In this language, the latest condition can be phrased as \(\Gamma \) is Zariski-dense in \(G \). Now we can formulate a stronger version of the strong approximation (due to Weisfeiler).
1.2. EXPANDERS AND SUPER-APPROXIMATION

Theorem 3 (Strong approximation: the Zariski-dense case). Suppose G is a Zariski-connected simply-connected semisimple group given by integer polynomials. Suppose $\Gamma \subseteq G(\mathbb{Z}[1/q_0])$ is a Zariski-dense subgroup. Then for every integer n with large enough prime factors the residue modulo n congruence map $\pi_n : \Gamma \rightarrow G(\mathbb{Z}/n\mathbb{Z})$

is surjective.

1.2 Expanders and super-approximation

Suppose G is a group and Ω is a subset of G. We say Ω is a symmetric subset if the inverse of every element of Ω is in Ω. The Cayley graph of G with respect to Ω is an undirected graph whose set of vertices is G and $g_1, g_2 \in G$ are connected exactly when $g_1^{-1}g_2 \in \Omega$. The Cayley graph of G with respect to Ω is denoted by $\text{Cay}(G; \Omega)$. Notice that $\text{Cay}(G; \Omega)$ is a $|\Omega|$-regular graph; this means that the degree of every vertex is $|\Omega|$. The set of neighbors of g is $g\Omega = \{gw | w \in \Omega\}$. Continuing, we obtain that the connected component of g is the set

$$\{gw_1 \cdots w_n | n \in \mathbb{Z}^+, w_1, \ldots, w_n \in \Omega\}.$$

Since Ω is symmetric, $\{w_1 \cdots w_n | n \in \mathbb{Z}^+, w_1, \ldots, w_n \in \Omega\}$ is the subgroup generated by Ω. Hence $\text{Cay}(G, \Omega)$ is connected if and only if Ω is a generating set of G. Therefore the strong approximation is equivalent to saying that if Ω is a symmetric generating set of a Zariski-dense subgroup of $G(\mathbb{Z}[1/q_0])$, then under the right conditions on G and n, $\text{Cay}(G(\mathbb{Z}/n\mathbb{Z}), \pi_n(\Omega))$ is a connected graph. Super-approximation is about whether these graphs are highly connected.

Next we formulate what it means for a family of graphs to be highly connected. One way of thinking about the well-connectivity is in terms of people who live in a society. A society is well-connected if it is not consist of two or more communities that are not well-integrated. This means what links these communities together is much less than their sizes.

We can quantify this using the **Cheeger constant** of a graph. The Cheeger constant of a finite graph \mathcal{G} is

$$h(\mathcal{G}) := \min \left\{ \frac{|E(A, A^c)|}{\min\{|A|, |A^c|\}} \middle| A \subseteq V_{\mathcal{G}} \right\},$$

where $E(A, A^c)$ is the set of all the edges that connect a vertex in A to a vertex in A^c. Notice that in a k-regular graph starting with a vertex v_0, the number of vertices that are of distance at most n from v_0 is at least

$$\min\{|V_{\mathcal{G}}|/2, (1 + h(\mathcal{G}))/k^n\}.$$

This means these balls are expanding exponentially fast. Motivated by this, we say a family $\{\mathcal{G}_i\}_i$ of k-regular graphs is a family of expanders if and only if $\inf_i h(\mathcal{G}_i) > 0$; this means there is a uniform positive constant for the Cheeger constants of all of these graphs.
CHAPTER 1. WHAT IS SUPER-APPROXIMATION? 1ST TRY.

graphs. This implies that the number of vertices in balls of these graphs grow uniformly exponentially fast (till they contain at least half of the vertices).

A result of Selberg implies that \(\{ \text{Cay}(\text{SL}_2(\mathbb{Z}/n\mathbb{Z}), \Omega_i) \} \) is a family of expanders if \(i = 1, 2 \) and \(\gcd(n, i) = 1 \), where

\[
\Omega_i = \left\{ \begin{pmatrix} 1 & \pm i \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ \pm i & 1 \end{pmatrix} \right\}.
\]

Selberg’s proof was based on the Kloosterman sum, and his result can be applied to every finitely generated congruence subgroup of \(\text{SL}_2(\mathbb{Z}) \). A subgroup of \(\text{SL}_2(\mathbb{Z}) \) is called a congruence subgroup if it contains \(\ker \pi_n \) for some \(n \), where \(\pi_n : \text{SL}_2(\mathbb{Z}) \to \text{SL}_2(\mathbb{Z}/n\mathbb{Z}) \) is the residue modulo \(n \) congruence map. The group generated by \(\Omega_1 \) is \(\text{SL}_2(\mathbb{Z}) \), and as you can see in Exercise 4, the subgroup generated by \(\Omega_2 \) contains the kernel of \(\pi_4 \).

The group generated by \(\Omega_3 \), however, is of infinite index in \(\text{SL}_2(\mathbb{Z}) \) (see Exercise 8), and so it cannot be a congruence subgroup. Notice that the Zariski-closure of the group generated by \(\Omega_3 \) contains the group generated by \(\Omega_1 \), and so it is Zariski-dense in \(\text{SL}_2(\mathbb{Z}) \). Peter Sarnak refer to this type of groups as thin groups; that means a thin group is a Zariski-dense subgroup of infinite index in \(G(\mathbb{Z}) \) (or more generally \(G(\mathbb{Z}[1/q_0]) \)) for some algebraic group \(G \). Since the group generated by \(\Omega_3 \) is Zariski-dense in \(\text{SL}_2(\mathbb{Z}) \), by the strong approximation, for every large enough prime \(p \) (in fact it is enough to assume that \(p \geq 5 \)), \(\text{Cay}(\text{SL}_2(\mathbb{Z}/p\mathbb{Z}), \Omega_3) \) is connected. Lubotzky asked whether these graphs form a family of expanders. This is referred to Lubotzky’s 1-2-3 problem, and Bourgain and Gamburd in their seminal work gave an affirmative answer to this question.

Theorem 4 (Bourgain–Gamburd). Suppose \(\Omega \) is a finite symmetric subset of \(\text{SL}_2(\mathbb{Q}) \). Let \(\Gamma \) be the group generated by \(\Omega \). Suppose \(\Gamma \) is Zariski dense in \(\text{SL}_2(\mathbb{Q}) \). Then there is \(p_0 \) such that the family of graphs \(\{ \text{Cay}(\text{SL}_2(\mathbb{Z}/p\mathbb{Z}), \pi_p(\Omega)) \mid p \geq p_0, \text{p prime} \} \) is a family of expanders.

We refer to results of this type as super-approximation. The main goals of these notes are to cover the relevant general strategies, go over the type of tools involved, and survey the best known super-approximation results. This comes with the cost of not going into the details of most of the proofs.

1.3 Exercises

1. (Continued fraction) For a sequence of numbers \(\{ b_i \}_{i=0}^{\infty} \), we use \([b_0; b_1, \ldots, b_m] \) to denote

\[
b_0 + \cfrac{1}{b_1 + \cfrac{1}{\cdots + \cfrac{1}{b_{m-1} + \cfrac{1}{b_m}}}}
\]

and \([b_0; b_1, \ldots] \) to denote \(\lim_{m \to \infty} [b_0; b_1, \ldots, b_m] \) (if this limit exists).
1.3. EXERCISES

a) For a sequence of non-zero real numbers \(\{b_i\}_{i=0}^{\infty} \), suppose
\[
\begin{pmatrix} b_0 & 1 \\ 1 & 0 \end{pmatrix} \cdots \begin{pmatrix} b_n & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} x \\ 1 \end{pmatrix} = \begin{pmatrix} r_n(x) \\ s_n(x) \end{pmatrix}.
\]
Prove that \(\frac{r_n(x)}{s_n(x)} = [b_0; b_1, \ldots, b_n, x] \). (Hint: use induction on \(n \).)

b) For a sequence of non-zero integers \(\{b_i\}_{i=0}^{\infty} \), let \(p_{-1} = 1 \), \(q_{-1} = 0 \),
\[
p_{n+1} := p_nb_{n+1} + p_{n-1} \quad q_{n+1} := q_nb_{n+1} + q_{n-1}
\]
for every non-negative integer \(n \). Prove that
\[
\begin{pmatrix} b_0 & 1 \\ 1 & 0 \end{pmatrix} \cdots \begin{pmatrix} b_n & 1 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} p_n & p_{n-1} \\ q_n & q_{n-1} \end{pmatrix},
\]
for every non-negative integer \(n \). Deduce that \(\frac{p_n}{q_n} = [b_0; b_1, \ldots, b_n] \),
\[
p_nq_{n-1} - p_{n-1}q_n = (-1)^{n+1}, \text{ and } \gcd(p_n, q_n) = 1.
\]

c) For a sequence of positive integers \(\{b_i\}_{i=0}^{\infty} \), suppose \(\frac{p_n}{q_n} \) is the simple form of the rational number \([b_0; b_1, \ldots, b_n]\). Use the previous part to show that
\[
\frac{p_n}{q_n} - \frac{p_{n-1}}{q_{n-1}} = \frac{(-1)^{n+1}}{q_{n-1}q_n},
\]
and deduce that \(\lim_{n \to \infty} \frac{p_n}{q_n} \) exists, and so \([b_0; b_1, \ldots] \) is well-defined.

d) For a non-zero real number \(x \), we let \(x_0 := x \) and define the sequences \(\{a_i\}_{i=0}^{\infty} \) and \(\{x_i\}_{i=0}^{\infty} \) inductively as follows. We set \(a_i := [x_i] \) for every integer \(i \) and \(x_{i+1} := \frac{1}{(x_i)} \) where \(\{y\} := y - \lfloor y \rfloor \) is the fractional part of \(y \).
We stop if \(x_i \) is an integer. Suppose \(\frac{p_n}{q_n} \) is the simple form of \([a_0; a_1, \ldots, a_n]\).
Show that \(x = [a_0; a_1, \ldots, a_n, x_{n+1}] \) for every non-negative integer \(n \).

e) In the setting of the previous item, prove that
\[
x = \frac{p_nx_{n+1} + p_{n-1}}{q_nx_{n+1} + q_{n-1}},
\]
and deduce that
\[
x - \frac{p_n}{q_n} = \frac{(-1)^n}{q_n(q_nx_{n+1} + q_{n-1})}.
\]

f) In the above setting, prove that \(x = [a_0; a_1, \ldots] \), and
\[
\frac{1}{q_n(q_n + q_{n+1})} \leq |x - \frac{p_n}{q_n}| \leq \frac{1}{q_nq_{n+1}}.
\]

g) For an irrational number \(\alpha = [a_0; a_1, \ldots] \), let
\[
M(\alpha) := \lim_{n \to \infty} \sup[a_n; a_{n+1}, \ldots] + [0; a_{n-1}, \ldots, a_1].
\]
Prove that there are infinitely many rational numbers of simple form \(\frac{p}{q} \) such that
\[
|\alpha - \frac{p}{q}| \leq \frac{1}{M(\alpha)q^2}.
\]
h) (Hurwitz’s theorem) Prove that $M(\alpha) \geq \sqrt{5}$ for every rational number α, and equality holds for the Golden ratio $[1; 1, 1, \ldots]$.

2. (Generating $\text{SL}_2(\mathbb{Z})$) Suppose $\gamma = \begin{pmatrix} a & c \\ b & d \end{pmatrix} \in \text{GL}_2(\mathbb{Z})$.

 a) Suppose $\frac{a}{b} = [c_0; c_1, \ldots, c_n]$. Then

 $$\gamma = \begin{pmatrix} c_0 & 1 \\ 1 & 0 \end{pmatrix} \cdots \begin{pmatrix} c_n & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & e \\ 0 & \pm 1 \end{pmatrix}$$

 for some integer e.

 b) Prove that $\text{SL}_2(\mathbb{Z}) = \langle \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \rangle$.

3. (Strong approximation: the $\text{SL}_2(\mathbb{Z})$ case) Suppose n is a positive integer and $\bar{\gamma} = \begin{pmatrix} \bar{a} \\ \bar{b} \end{pmatrix} \in \text{SL}_2(\mathbb{Z}/n\mathbb{Z})$.

 a) Prove that there are integers a and b such that $\pi_n(a) = \bar{a}$, $\pi_n(b) = \bar{b}$, and $\gcd(a, b) = 1$, where π_n is the residue modulo n congruence map.

 b) Prove that there are $\lambda \in \text{SL}_2(\mathbb{Z})$ and $\bar{e} \in \mathbb{Z}/n\mathbb{Z}$ such that

 $$\pi_n(\lambda)^{-1}\bar{\gamma} = \begin{pmatrix} 1 & \bar{e} \\ 0 & 1 \end{pmatrix}.$$

 c) Prove that $\pi_n : \text{SL}_2(\mathbb{Z}) \to \text{SL}_2(\mathbb{Z}/n\mathbb{Z})$ is surjective.

4. Let $\alpha := \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix}$ and $\beta := \begin{pmatrix} 1 & 0 \\ 2 & 1 \end{pmatrix}$. Suppose a is odd and b is a non-zero even number. Let $v := \begin{pmatrix} a \\ b \end{pmatrix}$.

 a) (The reduction process) Prove that there is $l \in \mathbb{Z}$ such that

 $$\min\{\|\alpha^lv\|_\infty, \|\beta^lv\|_\infty\} < \|v\|_\infty.$$

 b) Prove that there is $\gamma \in \langle \alpha, \beta \rangle$ such that $\gamma v = \pm \begin{pmatrix} 1 \\ 0 \end{pmatrix}$.

 c) Prove that $\langle \alpha, \beta, -I \rangle = \ker \pi_2$ where $\pi_2 : \text{SL}_2(\mathbb{Z}) \to \text{SL}_2(\mathbb{Z}/2\mathbb{Z})$ is the residue modulo 2 congruence map.

 d) Prove that $\langle \alpha, \beta \rangle$ contains the kernel of π_4.

5. (Ping-pong lemma) Suppose G is a group and it acts on a set X. Suppose G_1 and G_2 are two subsets of G, $|G_1| \geq 2$, and $|G_2| \geq 3$. Suppose X_1 and X_2 are two subsets of X such that $X_1 \nsubseteq X_2$ and $X_2 \nsubseteq X_1$. Suppose

 $$(G_1 \setminus \{1\}) \cdot X_2 \subseteq X_1 \quad \text{and} \quad (G_2 \setminus \{1\}) \cdot X_1 \subseteq X_2.$$

 Prove that $(G_1 \cup G_2) \simeq G_1 * G_2$.

6. Suppose \(a \geq 2 \). Let \(\alpha := \begin{pmatrix} 1 & a \\ 0 & 1 \end{pmatrix}, \beta := \begin{pmatrix} 1 & 0 \\ a & 1 \end{pmatrix}, G_1 := \langle \alpha \rangle, \) and \(G_2 := \langle \beta \rangle \).

Let \(X_1 := \{ (x,y) \in \mathbb{R}^2 | |x| \geq \frac{a}{2} |y| \} \) and \(X_2 := \{ (x,y) \in \mathbb{R}^2 | |x| \leq \frac{a}{2} |y| \} \).

a) Consider the natural linear action of \(SL_2(\mathbb{R}) \) on \(\mathbb{R}^2 \). Prove that \((G_1 \setminus \{ I \}) \cdot X_2 \subseteq X_1 \) and \((G_2 \setminus \{ I \}) \cdot X_1 \subseteq X_2 \).

b) Prove that \(\alpha \) and \(\beta \) freely generate a free subgroup of \(SL_2(\mathbb{R}) \).

7. Let \(\alpha := \pm \begin{pmatrix} 1 & 1 \\ -1 & 0 \end{pmatrix} \) and \(\beta := \pm \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \) be two elements of the group \(PSL_2(\mathbb{Z}) := SL_2(\mathbb{Z})/\{ \pm I \} \).

a) Use Exercise 2 to show that \(PSL_2(\mathbb{Z}) = \langle \alpha, \beta \rangle \) and deduce that there is a surjective group homomorphism from \(\mathbb{Z}/3\mathbb{Z} \ast \mathbb{Z}/2\mathbb{Z} \) to \(PSL_2(\mathbb{Z}) \).

b) Consider the Möbius group action of \(PSL_2(\mathbb{R}) \) on \(\mathbb{C} \cup \{ \infty \} \); that means
\[
\pm \begin{pmatrix} a & b \\ c & d \end{pmatrix} \cdot z := \frac{az + b}{cz + d},
\]
(justify that it is a group action). Notice that
\[
\alpha \cdot z = -1 - \frac{1}{z}, \quad \alpha^{-1} \cdot z = -\frac{1}{z + 1}, \quad \text{and} \quad \beta \cdot z = -\frac{1}{z}.
\]

Let \(X_1 \) be the set of all positive irrational real numbers and \(X_2 \) be the set of all the negative irrational real numbers. Show that
\[
(\langle \alpha \rangle \setminus \{ I \}) \cdot X_1 \subseteq X_2 \quad \text{and} \quad (\langle \beta \rangle \setminus \{ I \}) \cdot X_2 \subseteq X_1.
\]

c) Prove that there is an isomorphism \(PSL_2(\mathbb{Z}) \simeq \mathbb{Z}/3\mathbb{Z} \ast \mathbb{Z}/2\mathbb{Z} \) which factors through \(\langle \alpha \rangle \ast \langle \beta \rangle \).

8. Prove that \(\begin{pmatrix} 1 & 3 \\ 0 & 1 \end{pmatrix} \) and \(\begin{pmatrix} 1 & 0 \\ 3 & 1 \end{pmatrix} \) generate a subgroup of infinite index in \(SL_2(\mathbb{Z}) \).
(Hint: Use Exercise 7.)
Chapter 2

Random-walks on a graph and expanders

2.1 Basics of random-walks on a finite graph

A random walk on a graph \(G \) is a sequence of random variables \(\{X_i\}_{i=0}^{\infty} \) with values on the set of vertices \(V_G \) of \(G \) such that, for very non-negative integer \(i \), \(X_{i+1} \) is chosen independently at random from the neighbors of \(X_i \). For every vertex \(v \),

\[
P(X_{i+1} = v) = \sum_{w \in V_G} P(X_i = w)P(w \to v).
\]

Here for every \(w \in V_G \), \(P(w \to v) = \frac{1}{d_w} \) if \(\{w, v\} \in E_G \) where \(\{w, v\} \in E_G \) = 1 if \(w \) is connected to \(v \) in \(G \) and it is zero otherwise and \(d_w \) is the degree of the vertex \(w \); that means the number of edges that have \(w \) as one of their vertices. Let \(\mu_i \) be the distribution of \(X_i \); that means

\[
\mu_i : V \to [0,1], \quad \mu_i(v) = P(X_i = v).
\]

Suppose the set of vertices \(V := V_G \) is \(\{v_1, \ldots, v_n\} \). Then \(\mathfrak{B} := \{\delta_{v_1}, \ldots, \delta_{v_n}\} \) is an orthonormal basis of \(L^2(V) \). For every function \(f \in L^2(V) \), \(\langle f \rangle \) denotes the row matrix \((f(v_1) \cdots f(v_n)) \) and \(|f| \) denotes the transpose of \(\langle f \rangle \). Notice that \(f = \sum_{i=1}^{n} f(v_i) \delta_{v_i} \), and so \(|f| \) is simply the matrix representation of \(f \) with respect to the basis \(\mathfrak{B} \).

Let \(T \) be the transition matrix of the random-walk; that means the \((i, j) \)-entry of \(T \) is equal to

\[
P(v_i \to v_j) = \frac{1}{d_{v_i}} \mathbb{1}_{\{v_i, v_j\} \in E_G}.
\]

Then by (2.1), we have

\[
\langle \mu_{i+1} \rangle = \langle \mu_i \rangle T,
\]

and so the probability law after \(l \) steps random-walk is given by \(\langle \mu_l \rangle = \langle \mu_0 \rangle T^l \). We can understand and compute powers of a matrix the best if it is diagonal or at least diagonalizable. We know that a symmetric matrix is diagonalizable. We notice that
We notice that $\bar{A} = \bar{D} \bar{G}^{-1} A \bar{G}$, where \bar{G} is the diagonal matrix $\text{diag}(d_1, \ldots, d_n)$ and A is the adjacency matrix of the graph; that means the (i, j) entry is 1 if v_i is connected to v_j and 0 otherwise. Hence for every integer l, we have

$$T^l = D^{-l} A \bar{G} D^{-l} A \bar{G} \cdots D^{-l} A \bar{G}.$$

Therefore

$$T^l = D^{-l} \bar{M} D^{-l} A \bar{G} D^{-l} A \bar{G} \cdots D^{-l} \bar{M} D^{-l} A \bar{G} \cdots D^{-l} A \bar{G} \cdots D^{-l} \bar{M} D^{-l} A \bar{G}.$$

We notice that $M \bar{G}$ is a real symmetric. Hence it has a right orthonormal basis $\{ |\phi_1 \rangle, \ldots, |\phi_n \rangle \}$ with real eigenvalues $\lambda_1 \geq \cdots \geq \lambda_n$. Since $M \bar{G}$ is symmetric, $\{ |\phi_1 \rangle, \ldots, |\phi_n \rangle \}$ is left eigenbasis. By (2.2), we deduce T is diagonalizable with a right eigenbasis $\{ D^{-1/2} |\phi_1 \rangle, \ldots, D^{-1/2} |\phi_n \rangle \}$, a left eigenbasis $\{ \langle \phi_1 |D_1^{1/2} |\phi_1 \rangle, \ldots, \langle \phi_n |D_1^{1/2} |\phi_n \rangle \}$, and eigenvalues $\lambda_1 \geq \cdots \geq \lambda_n$. If $|\mu| = \sum_{i=1}^n c_i |\phi_i | D_1^{1/2}$, then by (2.2) we obtain that

$$|\mu| = \sum_{i=1}^n \lambda_i^2 |c_i | \langle \phi_i | D_1^{1/2}.$$

So it is crucial to gain a better understanding of λ_i’s. This is achieved by looking at the multiplication by T from left:

$$\mathcal{T} : L^2(V) \to L^2(V) \mid \mathcal{T}(f) = T|f|.$$

Notice that for every $v \in V$, $\mathcal{T}(f)(v) = \sum_w \mathbb{P}(v \to w) f(w)$ is the average of the values of f at the neighbors of v. Based on the fact that \mathcal{T} is an averaging operator and the maximum modulus principle, we can gain some basic information on λ_i’s.

For every i, let $\bar{\phi}_i : V \to \mathbb{R}, \bar{\phi}_i(v) := d_v^{-1/2} \phi_i (v)$. Then $\mathcal{T}(\bar{\phi}_i) = \lambda_i \bar{\phi}_i$ for every i. After replacing $\tilde{\phi}_i$ with $-\bar{\phi}_i$, if needed, we can and will assume that for some $w_0^{(i)} \in V$, $\bar{\phi}_i(w_0^{(i)}) = \| \bar{\phi}_i \|_\infty = \max_{v \in V} \{ |\bar{\phi}_i (v) | \}$. Hence

$$|\lambda_i| |\bar{\phi}_i(w_0^{(i)})| = |\mathcal{T}(\bar{\phi}_i)(w_0^{(i)})| \leq \sum_v \mathbb{P}(w_0^{(i)} \to v) |\bar{\phi}_i (v) | \leq \| \bar{\phi}_i \|_\infty.$$

(2.4)

By (2.4), we obtain that $|\lambda_i| \leq 1$ for every i.

Lemma 5. Every eigenvalue of $T_\bar{G}$ is in the interval $[-1, 1]$.

Next, we investigate the extreme possible values. Notice that $\mathcal{T} \mathbb{I}_V = \mathbb{I}_V$ where \mathbb{I}_V is the constant function 1; we can observe this based on the fact that $\mathcal{T} f(v)$ is the
average of the values of \(f \) at the neighbors of \(v \). Hence 1 is definitely an eigenvalue of \(\mathcal{T} \), and so by Lemma 5, \(\lambda_1 = 1 \).

A function in the kernel of \(\mathcal{T} - I \) is called harmonic. Suppose \(f \) is a non-zero real harmonic function. After replacing \(f \) with \(-f\), if needed, we can and will assume that \(f(w_0) = \|f\|_\infty \) for some \(w_0 \in V \). Then

\[
f(w_0) = |f(w_0)| \leq \sum_v \mathbb{P}(w_0 \to v)|f(v)| \leq ||f||_\infty,
\]

which implies that for every \(v \in V \), either \(\mathbb{P}(w_0 \to v) = 0 \) or \(f(v) = f(w_0) \). This means \(f(v) = f(w_0) \) for \(v \) that is connected to \(w_0 \). Repeating this argument, we obtain that \(f(v) = f(w_0) \) for every \(v \) in the connected component of \(w_0 \) in \(\mathcal{T} \). Conversely, characteristic functions of connected components of \(\mathcal{T} \) are harmonic functions. Altogether, we have proved the following statement.

Lemma 6. The dimension of the operator \(\mathcal{T} - I \) is equal to the number of connected components of \(\mathcal{T} \). In particular, \(\mathcal{T} \) is connected if and only if \(\lambda_2 < 1 \).

Suppose \(\mathcal{T} \) has eigenvalue \(-1\) and \(\mathcal{T} f = -f \) for a nonzero function \(f \). Replacing \(f \) with \(-f\), if needed, we can and will assume that \(f(w_0) = ||f||_\infty \) for some \(w_0 \in V \). Hence

\[
0 = \sum_v \mathbb{P}(w_0 \to v)(f(w_0) + f(v)) \quad \text{and} \quad f(w_0) + f(v) \geq 0, \quad \text{for every} \ v.
\]

Therefore for every neighbor \(v \) of \(w_0 \), we have \(f(v) = -f(w_0) \). Repeating this argument, we see that the value of \(f \) at every neighbor of a neighbor of \(w_0 \) is again \(f(w_0) \). We deduce that the connected component of \(w_0 \) is a bipartite graph; this means the vertices of this connected component can be partitioned into two sets \(A \) and \(B \), and every edge has an element in \(A \) and an element in \(B \).

Lemma 7. In the above setting \(\lambda_n = -1 \) if and only if \(\mathcal{T} \) has a bipartite connected component.

Proof. We have already proved that if \(\lambda_n = -1 \), then \(\mathcal{T} \) has a bipartite connected component. For the converse look at Exercise 1. \(\square \)

By (2.3), and Lemmas 6 and 7, we obtain the following result on the rate of convergence of random-walks on a finite connected non-bipartite regular graph.

Proposition 8. Suppose \(\{X_i\}_{i=0}^\infty \) is a random-walk on a finite connected non-bipartite \(k \)-regular graph \(\mathcal{G} \) \((k\text{-regular means that the degree of all the vertices are } k)\). Suppose \(\mu_i \) is the distribution of \(X_i \). Suppose \(\lambda_1 \geq \ldots \geq \lambda_n \) are as before the eigenvalues of the transition matrix. Let \(\lambda_{\mathcal{G}} := \max\{|\lambda_2|,|\lambda_n|\} \). Then the following statements hold.

1. \((L^2\text{-convergence})\) For every \(f \in L^2(V) \) and every positive integer \(l \),

\[
\left\| \mathcal{T}^l f - \frac{\langle f, \mathbb{1}_V \rangle}{|V|} \mathbb{1}_V \right\|_2 \leq \lambda_{\mathcal{G}}^l \|f\|_2
\]

where \(\mathcal{T} \) is as before.
2. \((L^1\)-convergence\) For every \(f \in L^1(V)\) and every positive integer \(l\),
\[
\left| \mathbb{E}[f(X_l)] - \frac{\sum_{v \in V} f(v)}{|V|} \right| \leq \lambda_g \|f\|_2;
\]
in particular, for every \(A \subseteq V\),
\[
\left| \mathbb{P}(X_l \in A) - \frac{|A|}{|V|} \right| \leq \lambda_g \sqrt{|A|}.
\]

3. (Mixing) For every \(f, g \in L^2(V)\),
\[
\left| \langle f, \mathcal{T}^l g \rangle - \left(\sum_{v \in V} f(v) \right) \frac{\sum_{v \in V} g(v)}{|V|} \right| \leq \lambda_g \|f\|_2 \|g\|_2.
\]

Proof. Suppose \(\{\phi_1, \ldots, \phi_n\}\) is as before an orthonormal basis of \(M_g\). Notice that since \(G\) is \(k\)-regular, \(M_g = T_g\). Also notice that \(\phi_1 = \frac{1}{\sqrt{|V|}} \mathbb{1}_V\), and for every \(f \in L^2(V)\), the orthogonal projection of \(f\) to the space of constant functions is
\[
\frac{\langle f, \mathbb{1}_V \rangle}{|V|} \mathbb{1}_V.
\] (2.5)

For \(f \in L^2(V)\), suppose \(f = \sum_{i=1}^n c_i \phi_i\). Then \(\|f\|_2^2 = \sum_{i=1}^n |c_i|^2\) and by (2.5), we have
\[
\mathcal{T}^l f - \frac{\langle f, \mathbb{1}_V \rangle}{|V|} \mathbb{1}_V = \sum_{i=2}^n \lambda_i c_i \phi_i.
\]
This implies that
\[
\left\| \mathcal{T}^l f - \frac{\langle f, \mathbb{1}_V \rangle}{|V|} \mathbb{1}_V \right\|_2^2 = \sum_{i=2}^n |\lambda_i|^2 |c_i|^2 \leq \lambda_g^2 \sum_{i=2}^n |c_i|^2 \leq \lambda_g \|f\|_2^2.
\]
This completes the proof of the first part.

Assuming that the first \(L^1\)-convergence inequality is proved, we let \(f\) be the characteristic function \(\mathbb{1}_A\) of \(A\). The desired inequality follows from the fact that \(\mathbb{E}[\mathbb{1}_A(X_l)] = \mathbb{P}(X_l \in A)\). For the rest of the inequalities look at the exercise 2. \(\square\)

We refer to \(\lambda_g\) as the **spectral gap** of this random walk. Notice that
\[
\lambda_g = \| \mathcal{T}_g |_{L^2(V)^\circ} \|_{\text{op}}
\]
where \(L^2(V)^\circ := \{ f \in L^2(V) | \sum_{v \in V} f(v) \}\) is the space of functions that are orthogonal to the space of constant functions.

It is intuitive that a random-walk on a well-connected regular graph should quickly converge to equidistribution. This means having a lower bound for the Cheeger constant \(h(\mathcal{G})\) of a finite \(k\)-regular graph \(\mathcal{G}\) should give us an upper bound for \(\lambda_g\). In the rest of this chapter, we prove a variant of this result.
2.2 Discrete Laplacian

Suppose G is a finite k-regular graph. Pick an orientation for the edges. For every edge $e \in E_G$, let e^- be the initial vertex and e^+ be the terminal vertex of the oriented version. Thinking about a function $f : V_G \to \mathbb{R}$ as the amount of charge on nodes, $df(e) := f(e^+) - f(e^-)$ measures the amount of the resistance times the current on that edge. We can also think of the vertices as 0-cells, the edges as 1-cells, and $d : L^2(V) \to L^2(E)$, $df(e) := f(e^+) - f(e^-)$ as the boundary map. We notice that $d^* : L^2(E) \to L^2(V)$, $d^*g(v) = \sum_{v \sim w} g(w) - \sum_{v \sim w} g(v)$ (See Exercise 3). Thinking about a function g on the edges as the amount of a flow going through that edge, we can think about $d^*g(v)$ as the amount of the flow that sinks in v. For every $f \in L^2(V)$, we have

$$d^*df(v) = \sum_{v \sim w} df(e) - \sum_{v \sim w} df(e)$$

$$= \sum_{v \sim w} (f(e^+) - f(e^-)) - \sum_{v \sim w} (f(e^+) - f(e^-))$$

$$= d_e f(v) - \sum_{w \sim v} f(w)$$

$$= k((I - \mathcal{R}_G)(f))(v),$$

where $w \sim v$ means $\{w, v\}$ is an edge in \mathcal{G}. Hence

$$\mathcal{L}_G := I - \mathcal{R}_G = \frac{1}{k} d^*d,$$ \hspace{1cm} (2.6)

and it is called the discrete Laplacian of the k-regular graph \mathcal{G}. Assuming that $\{\phi_1, \ldots, \phi_n\}$ is an orthonormal basis of \mathcal{F} with eigenvalues $\lambda_1 \geq \cdots \geq \lambda_n$, by (2.6) we obtain that

$$\mathcal{L}_G(\phi_i) = (1 - \lambda_i)\phi_i$$

for every i. Hence assuming \mathcal{G} is connected, eigenvalues of \mathcal{L}_G are

$$0 = 1 - \lambda_1 < 1 - \lambda_2 \leq \cdots \leq 1 - \lambda_n \leq 2.$$

For $f \in L^2(V)$, suppose $f = \sum_{i=1}^n c_i \phi_i$. Then $\|f\|_2^2 = \sum_{i=1}^n |c_i|^2$ and

$$\|df\|_2^2 = \langle df, df \rangle = \langle f, d^*df \rangle = \langle f, \mathcal{L}f \rangle$$

$$= \sum_{i,j} c_i \overline{c}_j \langle \phi_i, \mathcal{L}\phi_j \rangle = \sum_{i,j} (1 - \lambda_j) c_i \overline{c}_j \langle \phi_i, \phi_j \rangle$$

$$= \sum_{i=1}^n (1 - \lambda_i) |c_i|^2 = \sum_{i=2}^n (1 - \lambda_i)|c_i|^2.$$ \hspace{1cm} (2.7)

By (2.7), we obtain the following description of $1 - \lambda_2$.

Lemma 9. In the previous setting,

\[1 - \lambda_2 = \min \left\{ \| df \|_2^2 f \in L^2(V) \setminus \{0\} \right\}. \]

Proof. By (2.7), we have

\[\| df \|_2^2 \geq (1 - \lambda_2^2) \sum_{i=2}^{n} |c_i|^2 \]

where \(f = \sum_{i=1}^{n} c_i \phi_i \). Notice that \(c_i = \langle f, \phi_i \rangle \) for every \(i \); in particular \(c_1 = 0 \) as \(\phi_1 \) is constant and \(f \in L^2(V) \). Therefore

\[\| f \|_2^2 = \sum_{i=2}^{n} |c_i|^2. \]

Altogether, we have

\[\| df \|_2^2 \geq (1 - \lambda_2^2) \| f \|_2^2 \]

for every \(f \in L^2(V) \). Therefore

\[1 - \lambda_2 \leq \min \left\{ \| df \|_2^2 f \in L^2(V) \setminus \{0\} \right\}. \quad (2.8) \]

We also notice that

\[\| df_2 \|_2^2 = \langle f_2, L f_2 \rangle = 1 - \lambda_2^2, \]

and this shows that the equality in (2.8) holds. This completes the proof.

Sometimes it is useful to notice that

\[\| df \|_2^2 = \sum_{e \in E} |f(e^+) - f(e^-)|^2 = \sum_{w \sim v} |f(v) - f(w)|^2, \]

and so

\[1 - \lambda_2 \leq \frac{\sum_{w \sim v} |f(v) - f(w)|^2}{\sum_v |f(v)|^2} \]

if \(\sum_v f(v) = 0 \) and \(f \neq 0 \).

Next we show that the Cheeger constant can be described based on an \(L^1 \)-version of Lemma 9. This is done based on finding various good cuts.

2.3 Finding good cuts

In a society, communities shape based on certain features. Inspired by this, in social medias, we try to find certain features that can distinguish various communities. A basic such example is finding a feature that can split people into two communities; this means finding a good cut in the underlying graph. In mathematical language, a feature is simply a function \(f \) on the set of the vertices of the given (social media) graph, and after picking a critical value \(c_0 \), we split the vertices based on whether the value of \(f \) at the given vertex is more or less than \(c_0 \).

Suppose \(G \) is a finite graph with the set of vertices \(V \) and set of edges \(E \). For \(f : V \to \mathbb{R} \) and \(c \in \mathbb{R} \), let

\[V_{f,c}^- := \{ v \in V | f(v) < c \}, \]

and

\[h_G(f) := \inf_c \frac{|E(V_{f,c}^-, V \setminus V_{f,c}^-)|}{\min\{|V_{f,c}^-|, |V \setminus V_{f,c}^-|\}}. \]

This means \(h_G(f) \) quantifies how good of a cut we can get using \(f \). We can view \(f \) as a projection of the graph \(G \) to a line. Starting with a measure \(\mu \) on \(\mathbb{R} \), using the
2.3. FINDING GOOD CUTS

projection given by f, we can put a weight on each edge. For an edge $e = \{v, w\}$, let I_e be the interval with the end points $f(v)$ and $f(w)$. Then the weight of e corresponding to μ and f is $\mu(I_e)$.

In this section, we use a probabilistic method to find upper bounds for $h_g(f)$.

Lemma 10. Suppose μ is a measure on \mathbb{R}, and $f : V \to \mathbb{R}$. For every edge $e = \{v, w\}$, let I_e be the interval with end points $f(v)$ and $f(w)$. Then

$$\int |E(V_{f_e}^-, V \setminus V_{f_e}^-)|d\mu(c) = \sum_e \mu(I_e).$$

Proof. Notice that $e \in E(V_{f_e}^-, V \setminus V_{f_e}^-)$ if and only if $c \in I_e$. Hence

$$\int |E(V_{f_e}^-, V \setminus V_{f_e}^-)|d\mu(c) = \sum_e \int [e \in E(V_{f_e}^-, V \setminus V_{f_e}^-)]d\mu(c) = \sum_e \mu(I_e).$$

This completes the proof. \qed

Lemma 11. Suppose μ is a measure on \mathbb{R} such that $\mu(\{e\}) = 0$ for every $e \in \mathbb{R}$, and $f : V \to \mathbb{R}$. Let c_0 be the median of $f(v)$’s as v ranges in V. For every $v \in V$, let I_v be the interval with the end points c_0 and $f(v)$. Then

$$\int \min\{|V_{f_e}^-|, |V \setminus V_{f_e}^-|\}d\mu(c) = \sum_v \mu(I_v).$$

Proof. Notice that $\min\{|V_{f_e}^-|, |V \setminus V_{f_e}^-|\} = |V_{f_e}^-|$ if and only if $c \leq c_0$. Hence

$$\int \min\{|V_{f_e}^-|, |V \setminus V_{f_e}^-|\}d\mu(c) = \int_{c \leq c_0} |V_{f_e}^-|d\mu(c) + \int_{c > c_0} |V \setminus V_{f_e}^-|d\mu(c)$$

$$= \sum_v [f(v) < c_0] \mu(f(v), c_0) + [f(v) \geq c_0] \mu(c_0, f(v)]$$

$$= \sum_v \mu(I_v).$$

This completes the proof. \qed

Theorem 12. Suppose μ is a measure on \mathbb{R} such that $\mu(\{e\}) = 0$ for every $e \in \mathbb{R}$. Suppose $f : V \to \mathbb{R}$ is a function such that $\mu(\{\min_v f(v), \max_v f(v)\}) \neq 0$. Let c_0 be the median of $f(v)$’s as v ranges in V. For $v \in V$, let I_v be the interval with the end points c_0 and $f(v)$, and for $e = \{v, w\} \in E$, let I_e be the interval with the end points $f(v)$ and $f(w)$. Then

$$h_g(f) \leq \sum_{e \in E} \mu(I_e) \sum_{v \in V} \mu(I_v).$$

Proof. By Lemmas 10 and 11, we have

$$\int (\sum_v \mu(I_v))|E(V_{f_e}^-, V \setminus V_{f_e}^-)| - (\sum_e \mu(I_e)) \min\{|V_{f_e}^-|, |V \setminus V_{f_e}^-|\}d\mu(c) = 0.$$
Therefore for some c we have that
\[
\left(\sum_v \mu(I_v))|E(V_{f,c}, V \setminus V_{f,c})| - \sum_{e \in E} \mu(I_e) \min\{|V_{f,c}|, |V \setminus V_{f,c}|\} \right) \leq 0,
\]
and so
\[
h_G(f) \leq \frac{|E(V_{f,c}, V \setminus V_{f,c})|}{\min\{|V_{f,c}|, |V \setminus V_{f,c}|\}} \leq \sum_{e \in E} \mu(I_e).
\]

This finishes the proof. □

Special cases of μ give us interesting results. For instance the case when μ is the Lebesgue measure implies the following Theorem.

Theorem 13. Suppose \mathcal{G} is a finite graph with the set of vertices V. Let $h(\mathcal{G})$ be the Cheeger constant of \mathcal{G}. Then
\[
h(\mathcal{G}) = \inf \left\{ \frac{\|df\|_1}{\|f\|_1} \mid f \in L^1(V) \setminus \{0\}, \text{Med}(f) = 0 \right\},
\]
where Med(f) is the median of $f(v)$'s as v ranges in V.

Notice that for the L^2-norm in the denominator we took a shift of f which minimized the L^2-norm, and here for the L^1-norm we are taking a shift of f which minimizes the L^1-norm! It worths pointing out that df does not change as we shift f by a constant.

Proof of Theorem 13. Applying Theorem 12 for the case when μ is the Lebesgue measure ℓ, we obtain that
\[
h(\mathcal{G}) \leq \frac{\sum_{e \in E} \ell(I_e)}{\sum_{v \in V} \ell(I_v)},
\]
where E is the set of edges of \mathcal{G}, for $e = \{v, w\}$, I_e is an interval with the end points $f(v), f(w)$, and for $v \in V$, I_v is an interval with the end points Med$(f) = 0$ and $f(v)$. Hence
\[
\ell(I_e) = |df(e)| \quad \text{and} \quad \ell(I_v) = |f(v)|.
\]
Therefore $h(\mathcal{G}) \leq \frac{\|df\|_1}{\|f\|_1}$ if Med$(f) = 0$ and $f \neq 0$.

Suppose $h(\mathcal{G}) = \frac{|E(A,A^c)|}{|A|}$ for some $A \subseteq V$ with $|A| \leq |V|/2$. Let $f = 1_A$ be the characteristic function of A. Since $|A| \leq |V|/2$, Med$(f) = 0$. Notice that $\|df\|_1 = |E(A,A^c)|$ and $\|f\|_1 = |A|$, and so $h(\mathcal{G}) = \frac{\|df\|_1}{\|f\|_1}$. This completes the proof. □

2.4 Discrete isoperimetric inequalities

In this section, we use the L^2-optimization description of $1 - \lambda_2$ (see Lemma 9) and the bounds that we have found for $h(\mathcal{G})$ using Theorem 12, and prove isoperimetric inequalities.

Using Theorem 12 for the case when μ is the Lebesgue measure, we found an L^1-optimization description of $h(\mathcal{G})$. Thinking about edges as wires laying on a surface,
2.4. DISCRETE ISOPERIMETRIC INEQUALITIES

the Lebesgue measure more or less ends up giving us the total weight on top of a point. Next, we roughly think about this graph balanced about the median of f and measure the torque of each edge. This means we assume that 0 is the median and consider the measure μ given by the density function

$$d\mu(t) := |t| dt.$$

Notice that $\mu([a,b]) = \int_a^b |t| dt = \frac{b|b| - a|a|}{2}$. Hence

$$\sum_v \mu(I_v) = \frac{\|f\|^2}{2}, \quad (2.9)$$

where I_v is the interval with the endpoints $\text{Med}(f) = 0$ and $f(v)$. We also have

$$\sum_e \mu(I_e) = \frac{1}{2} \sum_e (f(e^+)|f(e^+)| - f(e^-)|f(e^-)|) \quad (2.10)$$

Notice that for every $a, b \in \mathbb{R}$, we have

$$b|b| - a|a| \leq |b - a|(|b| + |a|). \quad (2.11)$$

By (2.10) and (2.11), we obtain that

$$\sum_e \mu(I_e) \leq \sum_e |df(e)| \left(\frac{|f(e^+)| + |f(e^-)|}{2} \right),$$

and so by the Cauchy-Schwarz inequality, we have

$$\sum_e \mu(I_e) \leq \|df\|_2 \sqrt{\sum_e \left(\frac{|f(e^+)| + |f(e^-)|}{2} \right)^2}. \quad (2.12)$$

Because $(\frac{a+b}{2})^2 \leq \frac{a^2 + b^2}{2}$, by (2.12), we obtain

$$\sum_e \mu(I_e) \leq \|df\|_2 \sqrt{\sum_e |f(e^+)|^2 + |f(e^-)|^2} = \sqrt{\frac{k}{2}} \|df\|_2 \|f\|_2, \quad (2.13)$$

if \mathcal{G} is a k-regular graph.

By (2.9), (2.13), and Theorem 12, we deduce the following result.

Lemma 14. Suppose \mathcal{G} is a k-regular graph and $f : V \to \mathbb{R}$ is a function whose median is 0. Then

$$h(\mathcal{G}) \leq \sqrt{\frac{k}{2}} \frac{\|df\|_2}{\|f\|_2}.$$
2.5 Exercises

1. Suppose \(G \) is a finite graph that has a bipartite connected component. Prove that \(\mathcal{T}_G \) has eigenvalue \(-1\).

 (Hint: Suppose \(V \) has two disjoint subsets \(A \) and \(B \) such that if an edge \(e \) intersects \(A \cup B \), then \(|e \cap A| = |e \cap B| = 1\). Let \(f := \mathbb{1}_A - \mathbb{1}_B \) where for a subset \(Y \) of \(V \), \(\mathbb{1}_Y \) is the characteristic function of \(Y \). Prove that \(\mathcal{T} f = -f \).)

2. Prove the \(L^1 \)-convergence and the mixing property of a random-walk in a finite regular graph given in Proposition 8.

 (Hint. For the mixing, use the Cauchy-Schwarz inequality and obtain
 \[
 \left| \langle f, \mathcal{T} l g \rangle - \langle g, \mathbb{1}_V \rangle \mathbb{1}_V \right| \leq \| f \|_2 \| \mathcal{T} l g - \langle g, \mathbb{1}_V \rangle \mathbb{1}_V \|_2 \leq \lambda \| f \|_2 \| g \|_2,
 \]
 and finish the proof. For the \(L^1 \)-convergence, use the mixing inequality for \(g \) equals to the initial distribution \(\mu_0 \). Notice that
 \[
 \langle f, \mathcal{T} \mu_0 \rangle = \mathbb{E}[f(X_1)] \quad \text{and} \quad \sum_{v \in V} \mu_0(v) = 1.
 \]

3. Suppose \(\mathcal{G} = (V, E) \) is a directed graph. Let
 \[
 d : L^2(V) \to L^2(E), df(e) := f(e^+) - f(e^-).
 \]
 Prove that
 \[
 d^* g(v) = \sum_{v = e^-} g(e) - \sum_{v = e^+} g(e).
 \]
 (Hint. Notice that
 \[
 \langle df, g \rangle = \sum_{e \in E} df(e) g(e) = \sum_{e \in E} \left(f(e^+) - f(e^-) \right) g(e) = \sum_{v \in V} f(v) \left(\sum_{v = e^-} g(e) - \sum_{v = e^+} g(e) \right).
 \]