\qquad
\qquad
Section Time: \qquad
Math 20C.
Midterm Exam 2
November 21, 2005

Read each question carefully, and answer each question completely.
Show all of your work. No credit will be given for unsupported answers.
Write your solutions clearly and legibly. No credit will be given for illegible solutions.

1. (6 points)
(a) Find the tangent plane approximation $L(x, y)$ of the function

$$
f(x, y)=\sin (2 x+3 y)+1
$$

at the point $(-3,2)$.
(b) Use the approximation above to estimate the value of $f(-2.8,2.3)$.

$$
\begin{aligned}
& \text { (a) } L(x, y)=f(a, b)+f_{x}(a, b)(x-a)+f_{y}(a, b)(y-b) \\
& \nabla f=\langle 2 \cos (2 x+3 y), 3 \cos (2 x+3 y)\rangle \\
& \Rightarrow \nabla f(-3,2)=\langle 2,3\rangle
\end{aligned}
$$

and $f(-3,2)=1$. So $L(x, y)=1+2(x+3)+3(y-2)=2 x+3 y+1$.
(b) $f(x, y) \approx L(x, y)$

$$
\begin{aligned}
& =L(-2.8,2.3) \\
& =1+(2)(-2.8+3)+(3)(2.3-2) \\
& =1+(2)(+0.2)+(3)(0.3) \\
& =1+0.4+0.9 \\
\Rightarrow f(-2.8,2.3) & \approx 2.3
\end{aligned}
$$

The part related to critical points can be in our exam.
2. (6 points) Find the absolute maximum and absolute minimum of

$$
f(x, y)=2+x y-2 x-\frac{1}{4} y^{2}
$$

in the closed triangular region with vertices given by $(0,0),(1,0)$, and $(0,2)$. Justify your answer.

$$
\nabla f=\left\langle y-2, x-\frac{y}{2}\right\rangle=\langle 0,0\rangle
$$

$\Rightarrow\left\{\begin{array}{l}y=2 \\ x=\frac{y}{2}\end{array} \Rightarrow\right.$ it has only one critical pt $(1,2)$
So its only critical point is NOT in the region in which we are
 interested. So we should examine the boundary:

Segment $A B \quad y=0,0 \leq x \leq 1$
$f(x, 0)=2-2 x$ which is a decreasing function. So its max on $A B$ is $f(0,0)=2$, and its min on $A B$ is $f(1,0)=0$.
Segment $A C \quad x=0,0 \leq y \leq 2$

$$
g(y)=f(0, y)=2-\frac{1}{4} y^{2} \Rightarrow g^{\prime}(y)=\frac{-y}{2}=0
$$

$\Rightarrow \frac{y_{1}}{g^{\prime}(y)} 00$ - 0 . So the max of f on $A C$ is $f(0,0)=2$ and its min $g(y)=2$ in $A C$ is $f(0,2)=1$
Segment $B C \quad t \overrightarrow{O B}+(1-t) \overrightarrow{O C}=t\langle 1,0\rangle+(1-t)\langle 0,2\rangle$

$$
\begin{gathered}
=\langle t, 2-2 t\rangle \quad \text { for } 0 \leq t \leq 1 \\
h(t)=f(t, 2-2 t)=2+t(2-2 t)-2 t-\frac{1}{4}(2-2 t)^{2}
\end{gathered}
$$

$$
\begin{array}{rl}
& =2+2 t-2 t^{2}-2 t-\frac{\left(4-8 t+4 t^{2}\right)}{4} \\
& =2-2 t^{2}-1+2 t-t^{2} \\
& =1+2 t-3 t^{2} \\
\Rightarrow & h^{\prime}(t)=2-6 t=0 \Rightarrow t=\frac{1}{3} \\
t & 01 / 3-1 \\
\hline h^{\prime}(t) & 2+0--4 \\
\hline h(t) & 1 \times \frac{4}{3} \geq 0
\end{array}
$$

So $f\left(\frac{1}{3}, \frac{4}{3}\right)=\frac{4}{3}$ is the max of f on $B C$ and $f(1,0)=0$ is the min of f on $B C$

Hence by comparing the above values we have that
$f(0,0)=2$ is the absolute max. and $f(1,0)=0$ is the absolute min.
3. (6 points) Using Lagrange multipliers find the maximum and minimum values of

$$
f(x, y)=2(x+1) y
$$

subject to the constraint

$$
x^{2}+y^{2}=1 \text {. }
$$

We have to solve the following system of equations:

$$
\begin{aligned}
& \left\{\begin{array}{l}
\nabla f=c \nabla g \Rightarrow\left\{\begin{array}{l}
\langle 2 y, 2 x+2\rangle=c\langle 2 x, 2 y\rangle \\
g=1 \\
x^{2}+y^{2}=1
\end{array}\right]
\end{array}\right. \\
& \Rightarrow\left\{\begin{array} { l }
{ y = c x } \\
{ x + 1 = c y } \\
{ x ^ { 2 } + y ^ { 2 } = 1 }
\end{array} \Rightarrow \left\{\begin{array} { l }
{ x + 1 = c ^ { 2 } x } \\
{ x ^ { 2 } + c ^ { 2 } x ^ { 2 } = 1 }
\end{array} \Rightarrow \left\{\begin{array}{l}
x^{2}+x=c^{2} x^{2} \\
1-x^{2}=c^{2} x^{2}
\end{array}\right.\right.\right. \\
& \Rightarrow x^{2}+x=1-x^{2} \Rightarrow 2 x^{2}+x-1=0 \\
& \Rightarrow(2 x-1)(x+1)=0 \Rightarrow x=\frac{1}{2} \text { or } x=-1 \\
& x=\frac{1}{2} \Rightarrow y=\frac{ \pm \sqrt{3}}{2} \text { as } x^{2}+y^{2}=1 \text {. } \\
& x=-1 \Rightarrow y=0 \text { as } x^{2}+y^{2}=1 \text {. } \\
& f\left(\frac{1}{2}, \frac{\sqrt{3}}{2}\right)=2\left(\frac{3}{2}\right) \frac{\sqrt{3}}{2}=\frac{3 \sqrt{3}}{2} \text {. } \\
& f\left(\frac{1}{2}, \frac{-\sqrt{3}}{2}\right)=2\left(\frac{3}{2}\right)\left(\frac{-\sqrt{3}}{2}\right)=-\frac{3 \sqrt{3}}{2} \\
& f(-1,0)=2(0)(0)=0
\end{aligned}
$$

So $3 \sqrt{3} / 2$ is the max and $-3 \sqrt{3} / 2$ is the min.

$$
\begin{aligned}
& \int_{0}^{1} \int_{1}^{3} \frac{x}{y} e^{3 x^{2}} d y d x \\
= & \left.\int_{0}^{1} x e^{3 x^{2}} \ln (y)\right|_{y=1} ^{y=3} d x \\
= & \int_{0}^{1} \ln (3) x e^{3 x^{2}} d x
\end{aligned}
$$

Let $u=3 x^{2} \Rightarrow d u=6 x d x$

$$
\Rightarrow x e^{3 x^{2}} d x=\frac{1}{6} e^{u} d u
$$

$$
=\int_{0}^{3} \ln (3) \frac{1}{6} e^{u} d u
$$

$$
=\left.\frac{\ln (3)}{6} e^{u}\right|_{0} ^{3}=\frac{\ln (3)}{6}\left(e^{3}-1\right)
$$

