\qquad
\qquad
TA Name: \qquad Section Time: \qquad
Math 20C.
Midterm Exam 2
May 26, 2006

No calculators or any other devices are allowed on this exam.
Write your solutions clearly and legibly; no credit will be given for illegible solutions.
Read each question carefully. If any question is not clear, ask for clarification.
Answer each question completely, and show all your work.

1. (a) (5 points) Find and sketch the domain of the function $f(x, t)=\ln (3 x+2 t)$.
(b) (5 points) Find all possible constants c such that the function $f(x, t)$ above is solution of the wave equation, $f_{t t}-c^{2} f_{x x}=0$.
(a) $3 x+2 t>0$

line is NOT included

$$
\begin{aligned}
& \text { (b) } f_{(x, t)=\ln (3 x+2 t)} \\
& f_{x}=\frac{3}{3 x+2 t} \Rightarrow f_{x x}=\frac{-9}{(3 x+2 t)^{2}} \\
& f_{t}=\frac{2}{3 x+2 t} \Rightarrow f_{t t}=\frac{-4}{(3 x+2 t)^{2}} . \\
& f_{t t}-c^{2} f_{x x}=\frac{-4+c^{2} q}{(3 x+2 t)^{2}}=0 \\
& \text { if and only if } 9 c^{2}-4=0 \\
& \Leftrightarrow c= \pm \frac{2}{3} .
\end{aligned}
$$

$\#$	Score
1	
2	
3	
4	
Σ	

2. (a) (5 points) Find the direction in which $f(x, y)$ increases the most rapidly, and the directions in which $f(x, y)$ decreases the most rapidly at P_{0}, and also find the value of the directional derivative of $f(x, y)$ at P_{0} along these directions, where

$$
f(x, y)=x^{3} e^{-2 y}, \quad \text { and } \quad P_{0}=(1,0) .
$$

(b) (5 points) Find the directional derivative of $f(x, y)$ above at the point P_{0} in the direction given by $\mathbf{v}=\langle 1,-1\rangle$
(a) $f(x, y)$ increases the most rapidly in the direction

$$
\begin{aligned}
& \text { of } \nabla f\left(p_{0}\right)=\left\langle 3 x^{2} e^{-2 y},-2 x^{3} e^{-2 y}\right\rangle \\
& \Rightarrow \nabla f(1,0)=\langle 3,-2\rangle
\end{aligned}
$$

It decreases the mast rapidly in the direction of

$$
-\nabla f\left(p_{c}\right)=\langle-3,2\rangle
$$

The directional derivative of f along $\nabla f=\| \nabla f\left(p_{0} \|\right.$

$$
=\sqrt{9+4}=\sqrt{13}
$$

The directional derivative of f along $-\nabla f=-\| \nabla f\left(p_{0}^{\prime} \|\right.$

$$
=-\sqrt{9+4}=-\sqrt{13}
$$

(b) $D_{u} f=\vec{u}$. ∇f where $\vec{u}=\frac{\vec{v}}{\|\vec{v}\|}$.

$$
\begin{aligned}
\vec{u}=\frac{\langle 1,-1\rangle}{\sqrt{2}} & =\left\langle\frac{1}{\sqrt{2}} \cdot \frac{-1}{\sqrt{2}}\right\rangle \\
\mathcal{D}_{u} f(1,0) & =\left\langle\frac{1}{\sqrt{2}} \cdot \frac{-1}{\sqrt{2}}\right\rangle \cdot\langle 3,-2\rangle \\
& =\frac{5}{\sqrt{2}}=\frac{5 \sqrt{2}}{2}
\end{aligned}
$$

3. (a) (5 points) Find the tangent plane approximation of $f(x, y)=x \cos (\pi y / 2)-y^{2} e^{-x}$ at the point $(0,1)$.
(b) (5 points) Use the linear approximation computed above to approximate the value of $f(-0.1,0.9)$.

$$
\begin{aligned}
& \text { (a) } z=f(a, b)+f_{x}(a, b)(x-a)+f_{y}(a, b)(y-b) \\
& \nabla f=\left\langle\cos \left(\frac{\pi y}{2}\right)+y^{2} e^{x},-\frac{\pi}{2} x \sin \left(\frac{\pi y}{2}\right)-2 y e^{-x}\right\rangle \\
& \Rightarrow \nabla f(0,1)=\langle 1,-2\rangle
\end{aligned}
$$

and $f(0,1)=-1$

$$
\begin{aligned}
& \Rightarrow z=-1+(x-0)-2(y-1) \\
& \Rightarrow z=x-2 y+1
\end{aligned}
$$

(b) $f(a+\Delta x, b+\Delta y) \approx f(a, b)+f_{x}(a, b) \Delta x+f_{y}(a, b) \Delta y$

$$
\begin{aligned}
\Rightarrow f(-0.1,0.9) & \approx f(0.1)+f_{x}(0,1)(-0.1)+f_{y}(0,1)(-0.1) \\
& =-1+(-0.1)+(-2)(-0.1) \\
\Rightarrow f(-0.1,0.9) & \approx-0.9 .
\end{aligned}
$$

Only the part about local max. local min, or saddle point can be
4. (10 points) Find every local and absolute extrema of $f(x, y)=x^{2}+3 y^{2}+2 y$ on in our unit disk $x^{2}+y^{2} \leq 1$, and indicate which ones are the absolute of the interior sta se saddle points.

- $\quad \nabla f=\langle 2 x, 6 y+2\rangle=\langle 0,0\rangle$
$\Rightarrow x=0$ and $y=\frac{-1}{3} \Rightarrow\left(0, \frac{-1}{3}\right)$ is the only critical pt of f, and it is in the unit disk.
- On the boundary, we use Lagrange multiplier:

$$
\begin{aligned}
& \left\{\begin{array}{l}
\nabla f=c \nabla g, \text { where } g(x, y)=x^{2}+y^{2} \\
g=1
\end{array}\right. \\
& \Rightarrow\langle 2 x, 6 y+2\rangle=c\langle 2 x, 2 y\rangle \\
& \Rightarrow\left\{\begin{array}{l}
x=c x \quad \Rightarrow c=1 \text { or } x=0 \\
2 u-1=c y
\end{array}\right.
\end{aligned}
$$

If $c=1$, then $3 y+1=y \Rightarrow y=\frac{-1}{2}$
Since $x^{2}+y^{2}=1$, we have $x= \pm \frac{\sqrt{3}}{2}$
If $x=0$, then $y= \pm 1$ as $x^{2}+y^{2}=1$.
So overall on the boundary we get four points that might give us the absolute max or the abs. min.

Pts	$\left(0, \frac{-1}{3}\right)$	$\left(\pm \frac{\sqrt{3}}{2}, \frac{-1}{2}\right)$	$(0,1)$	$(0,-1)$
f	$\frac{-1}{3}$	$\frac{1}{2}$	5	1
	abs. min		abs. max.	

Since $f\left(c, \frac{-1}{3}\right)$ is an abs. min, it is also a local min.

