Math 21C Midterm II, Fall 02, Lindblad.

- 1. A particle moves with position vector given by $\mathbf{r}(t) = \cos t \, \mathbf{i} + \sin t \, \mathbf{j} + t^{3/2} \mathbf{k}$.
- (a) Find the velocity and speed of the particle at time $t = \pi$.
- (b) How far does the particle travel between time t = 0 and t = 10?
- 2. Let $F(x,y) = x^3 x^2 + y^2 y + 1$
- (a) Find the gradient $\nabla F(x, y)$.
- (b) Find the directional derivative in the direction of (1,2) at the point (2,3).
- (c) Let $\mathbf{r}(t) = \langle f(t), g(t) \rangle$ be a curve such that $\mathbf{r}(0) = \langle 1, 0 \rangle$ and $\mathbf{r}'(0) = \langle 1, 1 \rangle$. Let $h(t) = F(\mathbf{r}(t))$. Find h'(0).
- 3. Consider the surface given by $z = f(x, y) = \sqrt{x^2 + 3y^2}$.
- a) Find the tangent plane to the surface at the point (1, 1, 2).
- b) A student was asked to find an approximation for f(1.1, 1.2) but the professor did not allow calculators. The student noticed that f(1.1, 1.2) is approximately $f(1,1) = \sqrt{1+3} = 2$. Use the linear approximation to get a better approximation.
- 4. Let $f(x,y) = x^3 x^2 + y^2 y + 1$. Find the critical points of f(x,y) and determine if they are local max, min or saddle points. Are there any absolute max or min?
- 5. Use Lagrange multipliers to find the point on the hyperboloid $\{(x,y,z);\ z^2=x^2+y^2+1,\ z\geq 0\}$ that is closest to the point (0,0,-2).