Sometimes we have to choose the order of integration carfully: Ex. Find $\int_{0}^{1} \int_{x^{2 / 3}}^{1} x e^{y^{4}} d y d x$.
Solution. If we try to compute this directly, we have to compute $\int_{x^{2 / 3}}^{1} x e^{y^{4}} d y$ first. But $\int x e^{y^{4}} d y$ is not a "nice" function. In such cases, we should switch the order of integration. Sometimes the order is (either easier or) doable. To switch the order of integration one has to
(1) sketch the region
We start by sketching:

$$
\int_{0}^{1} \int_{x^{2 / 3} \cdots}^{1} \ldots d y d x
$$

(2) setup in the new order.

It means $0 \leq x \leq 1$ and, for a given $x, \quad x^{2 / 3} \leq y \leq 1$
To setup the integral in the new order $\iint_{\cdots}^{\infty} d x d y$
First we have to project to the y-axis
Then, for a given y, find the range of x.

Lecture 28: Order of integration; volume of solid Thursday, December 1, 2016 7:27 PM
As we can see $0 \leq y \leq 1$. Now for a fixed y, x is varying from the
 y-axis to the curve $y=x^{2 / 3}$. y-axis is $x=0$ and $y=x^{2 / 3} \Rightarrow x=y^{3 / 2}$. So, for a fixed y, $\quad 0 \leq x \leq y^{3 / 2}$. Overall we get

$$
\begin{aligned}
& \int_{0}^{1} \int_{x^{2 / 3}}^{1} x e^{y^{4}} d y d x=\iint_{D^{3 / 2}} x e^{y^{4}} d A=\int_{0}^{1} \int_{0}^{y^{3 / 2}} x e^{y^{4}} d x d y \\
& \quad=\left.\int_{0}^{1}\left(\frac{x^{2}}{2} e^{y^{4}}\right)\right|_{x=0} ^{x=y^{3 / 2}} d y \\
& \quad=\int_{0}^{1} \frac{\left(y^{3 / 2}\right)^{2}}{2} e^{y^{4}} d y=\int_{0}^{1} \frac{1}{2} y^{3} e^{y^{4}} d y \\
& \quad=\int_{0}^{1}\left(\frac{1}{2}\right) e^{u} \frac{d u}{4} \quad \begin{array}{l}
\text { substitution rule } \\
u=y^{4} \Rightarrow d u=4 y^{3} d y
\end{array} \\
& =\left.\frac{1}{8} e^{u}\right|_{0} ^{1}=\frac{1}{8}(e-1) .
\end{aligned}
$$

Ex. Compute the volume of the solid enclosed by $y=x^{2}-1, y=1-x^{2}$ and $0 \leq z \leq x^{2}$.
Solution. Recall volume of the solid where (x, y) is in a region D and $0 \leq z \leq f(x, y)$ is equal to $\iint_{D} f(x, y) d A$.

Lecture 28: Volume of a solid
Thursday, December 1,2016 7:40 PM
So volume of the solid enclosed by $y=x^{2}-1, y=1-x^{2}$, and $0 \leq z \leq x^{2}$ is equal to $\iint_{D} x^{2} d A$ where D is the region enclosed by $y=x^{2}-1$ and $y=1-x^{2}$.
To write $\iint_{D} \ldots d A$ as iterated integrals we have to sketch D. So we have to sketch $y=x^{2}-1$ and $y=1-x^{2}$.
This region has an easier vertical description: $-1 \leq x \leq 1$

$$
x^{2}-1 \leq y \leq 1-x^{2}
$$

So: volume $=\int_{-1}^{1} \int_{x^{2}-1}^{1-x^{2}} x^{2} d y d x$

$$
\begin{aligned}
& =\left.\int_{-1}^{1}\left(x^{2} y\right)\right|_{y=x^{2}-1} ^{y=1-x^{2}} d x \\
& =\int_{-1}^{1} x^{2}\left[\left(1-x^{2}\right)-\left(x^{2}-1\right)\right] d x=2 \int_{-1}^{1} x^{2}-x^{4} d x \\
& =\left.2\left(\frac{x^{3}}{3}-\frac{x^{5}}{5}\right)\right|_{-1} ^{1}=2\left[\left(\frac{1}{3}-\frac{1}{5}\right)-\left(\frac{-1}{3}-\frac{-1}{5}\right)\right] \\
& =(4)\left(\frac{2}{15}\right)=\frac{8}{15} .
\end{aligned}
$$

Lecture 28: Recall polar coordinates
In single-variable integrations you leaned a lot of techniques to deal with complicated functions. A double integral has two sources of complications: (1) function (2) region.

For some of the regions one has to use polar coordinates. Let's quickly recall polar coordinates:

(r, θ) is the polar coordinate of P where r is the distance from P to the origin. And θ is the angle that op makes with the positive direction of the x-axis.

Ex. What is $\theta=\frac{\pi}{4}$?
Solution. It is the following half-line.

In general, for a given $\alpha, \theta=\alpha$ is a half-line
$\theta=0$: positive direction of x-axis;
$\theta=\pi / 2$: positive direction of y-axis; $\theta=\pi$: negative direction of x-axis.)
math20c-f-16 Page 5

Lecture 28: Recall polar coordinates
Thursday, December 1, 2016 8:47 PM
Ex. $r=2$ is an equation of a circle centered at the origin with radius 2 .

The region $a \leq r \leq b, \alpha \leq \theta \leq \beta$ is the following:

We will see how polar coordinates can helpus in computing some double integrals.

