Lecture 25: Antiderivative of a vector valued function

We have seen how derivative of a vector-valued function helps us compute velocity and acceleration of a moving particle.

Ex. A stone is thrown at a speed $5 \mathrm{~m} / \mathrm{s}$ with angle 30° (compared to the horizontal line) from the top of a cliff 100 m high.
(a) Find the position of the stone after t seconds.
(b) When does it hit the ground?

Solution. Initial point $=(0,100)$

$$
=\vec{r}(0)
$$

- Initial velocity= (speed) (directional vector)

$$
\begin{aligned}
& =5\left(\cos 30^{\circ}, \sin 30^{\circ}\right) \\
& =5\left(\frac{\sqrt{3}}{2}, \frac{1}{2}\right)=\left(\frac{5 \sqrt{3}}{2}, \frac{5}{2}\right) \\
& =\vec{r}^{\prime}(0)=\vec{V}(0)
\end{aligned}
$$

- acceleration $=$ from gravitational force $=(0,-g)=\vec{r}^{\prime \prime}(t)=\vec{v}^{\prime}(t)$ (g is the earth gravitational constant $\approx 10 \mathrm{~m} / \mathrm{s}^{2}$).

So $\vec{v}^{\prime}(t)=(0,-g)$. Therefore taking anti-derivative of both sides we get: $\vec{v}(t)-\vec{v}(0)=\left(\int_{0}^{t} 0 d u, \int_{0}^{t}-g d u\right)=(0,-g t)$.

Lecture 25: Anti-derivative of vector-valued functions
Monday, November 21,2016 8:44 AM
Thus $\vec{v}(t)=\vec{v}(0)+(0,-g t)=\left(\frac{5 \sqrt{3}}{2}, \frac{5}{2}-g t\right)=\vec{r}^{\prime}(t)$.
Again taking anti-derivative of both sides we get:

$$
\begin{aligned}
\vec{r}(t)-\vec{r}(0) & =\left(\int_{0}^{t} \frac{5 \sqrt{3}}{2} d u, \int_{0}^{t} \frac{5}{2}-g t\right) \\
& =\left(\frac{5 \sqrt{3}}{2} t, \frac{5}{2} t-\frac{g t^{2}}{2}\right)
\end{aligned}
$$

Hence $\vec{r}(t)=\left(\frac{5 \sqrt{3}}{2} t, 100+\frac{5}{2} t-\frac{g t^{2}}{2}\right)$.
(b) To find when it hits the ground we should find out when the y-component is 0 .
(Let's approximate $g \approx 10$).

$$
\begin{aligned}
& -5 t^{2}+\frac{5}{2} t+100=0 \Rightarrow t^{2}-\frac{1}{2} t-20=0 . \\
\Rightarrow & \left(t-\frac{1}{4}\right)^{2}=20+\frac{1}{16}=\frac{321}{16} \Rightarrow t-\frac{1}{4}= \pm \sqrt{\frac{321}{16}} . \\
\Rightarrow & t=\frac{1 \pm \sqrt{321}}{4} .
\end{aligned}
$$

Only the positive value is acceptable: $t=\frac{1+\sqrt{321}}{4} \approx 4.5 \mathrm{~s}$.
We used the following twice in the above example:

$$
\int_{a}^{b}(x(t), y(t), z(t)) d t=\left(\int_{a}^{b} x(t) d t, \int_{a}^{b} y(t) d t, \int_{a}^{b} z(t) d t\right)
$$

Lecture 25: Total length traveled by a particle
. Suppose a moving particle at time t is at $\vec{r}(t)$. Wed like to find the total distance traveled by this particle in $a \leq t \leq b$.
It is the same as asking what the
 by $\vec{r}(t)$ is, for $a \leq t \leq b$.

If the particle is moving by a constant speed s_{0}, then the answer is $S_{0}(b-a)$. In general, we get

$$
\begin{aligned}
& \text { Total distance } \\
& \text { traveled } a \leq t \leq b
\end{aligned}=\int_{a}^{b} \operatorname{speed}(t) d t=\int_{a}^{b}\left\|\vec{r}^{\prime}(t)\right\| d t
$$

Similarly

$$
\begin{aligned}
& \text { length (it is often called arc-length) }=\int_{a}^{b}\left\|\vec{r}^{\prime}(t)\right\| d t \\
& \text { of the curve parametrized by } \\
& \vec{r}(t) \text {, for } a \leq t \leq b
\end{aligned}
$$ $\vec{r}(t)$, for $a \leq t \leq b$

Ex. Find the arc-length of $\vec{r}(t)=\left(\sin (3 t), \cos (3 t), 2 t^{3 / 2}\right)$ for $\quad 0 \leq t \leq u$.
solution. We have

$$
\begin{aligned}
& \text { arc- length of }=l(u)=\int_{0}^{4}\left\|\vec{r}^{\prime}(t)\right\| d t \\
& \vec{r}(t) \\
& \vec{r}^{\prime}(t)=\left(3 \cos (3 t),-3 \sin (3 t), 3 t^{1 / 2}\right) \\
& \Rightarrow\left\|\vec{r}^{\prime}(t)\right\|=\sqrt{(3 \cos (3 t))^{2}+(-3 \sin (3 t))^{2}+\left(3 t^{1 / 2}\right)^{2}} \\
&=\sqrt{9\left(\cos ^{2} 3 t+\sin ^{2} 3 t+t\right)} \\
&= 3 \sqrt{1+t} .
\end{aligned}
$$

Hence $\quad l(u)=\int_{0}^{u} 3 \sqrt{1+t} d t=3 \int_{0}^{u} v^{1 / 2} d v$

$$
\begin{aligned}
& \left\{\begin{array}{l}
v=1+t \\
d v=d t
\end{array}\right\} \\
& =3\left(\left.\frac{2}{3} v^{3 / 2}\right|_{0} ^{u}\right)=2 u^{3 / 2} .
\end{aligned}
$$

$\ell(u)=\int_{0}^{u}\left\|\vec{r}^{\prime}(t)\right\| d t$ is called the arc-length function.

Lecture 25: Product rules for inner and scalar products
Before we move to the next topic let me mention two rules of differentiation for vector-valued functions that sometimes come in handy:

Product Rules.
(1) $\frac{d}{d t}\left(\vec{r}_{1}(t) \cdot \vec{r}_{2}(t)\right)={\overrightarrow{r_{1}}}_{1}^{\prime}(t) \cdot \vec{r}_{2}(t)+\vec{r}_{1}(t) \cdot \vec{r}_{2}^{\prime}(t)$.
(2) $\frac{d}{d t}\left(\vec{r}_{1}(t) \times \vec{r}_{2}(t)\right)=\vec{r}_{1}^{\prime}(t) \times \vec{r}_{2}(t)+\vec{r}_{1}(t) \times \vec{r}_{2}^{\prime}(t)$.

Lecture 25: Speeding up/slowing down (extra reading)
Ex. Having the velocity vector $\vec{v}\left(t_{0}\right)$ and the acceleration vector $\vec{a}\left(t_{0}\right)$, can we say if the particle is speeding up or slowing down?
Solution. speeding up means the speed function set) is increasing at to; and slowing down means the speed function is decreasing at to. It is easier to work with $s(t)^{2}=\|\vec{v}(t)\|^{2}=\vec{V}(t) \cdot \vec{V}(t)$.

So we have to find out if $\left.\frac{d}{d t}\left(s(t)^{2}\right)\right|_{t=t_{0}}$ is positive or negative.

$$
\begin{aligned}
\left.\frac{d}{d t}\left(s(t)^{2}\right)\right|_{t=} & =\left.\frac{d}{d t}(\vec{v}(t) \cdot \vec{v}(t))\right|_{t=t_{0}} \\
& =\vec{V}^{\prime}\left(t_{0}\right) \cdot \vec{v}\left(t_{0}\right)+\vec{v}\left(t_{0}\right) \cdot \vec{v}^{\prime}\left(t_{0}\right)
\end{aligned}
$$

(product rule for inner product.)

$$
=2 \vec{a}\left(t_{0}\right) \cdot \vec{v}\left(t_{0}\right)
$$

So it speeds up if the angle between $\vec{a}\left(t_{0}\right)$ and $\vec{v}\left(t_{0}\right)$ is acute, and it slows down if this angle is obtus.

