Lecture 18: Tangent plane, directional derivative
Wednesday, November 2, 2016 8:50 AM
$x_{0}^{2}+y_{0}^{2}-z_{0}^{2}=-1$. So $\left(\frac{c}{2}\right)^{2}+c^{2}-\left(-\frac{3 c}{2}\right)^{2}=-1$, which implies $\left(\frac{1}{4}+1-\frac{9}{4}\right) c^{2}=-1$. Thus $c^{2}=1$, and so $c= \pm 1$.
Therefore there are two points at which $(1,2,3)$ is a normal vector of the tangent plane: $\pm\left(\frac{1}{2}, 1, \frac{-3}{2}\right)$

- Yet another application of chain rule is in finding the rate of change of f in a given direction. It is called the directional derivative of f in the direction \vec{u}.

We would like to know how fast
 f is changing if (x, y) changes in the direction of \vec{u}. So we need to parametrize the the line which is parallel to \vec{u} and passes through $\left(x_{\sigma}, y_{\sigma}\right)$. And then compute $\frac{d}{d t}(f \circ \vec{r})$. Let's point out that, since we care about direction, we assume \vec{u} is unit.
$\vec{r}(t)=\left(x_{0}, y_{0}\right)+t \vec{u}$ is the parametrization of the green light (with the constant speed $=1$).

