Lecture 14: Differentiation

Monday, October 24, 2016 8:40 AM

In the previous lecture we defined a differentiable function: P is differentiable at (x_o,y_o) iP lim (x,y)→(x_oy_o) $\frac{f(x,y) - L(x,y)}{(x,y) → (x_o,y_o)} = 0$ where $L(x,y) = f(x_0,y_0) + f_x(x_0,y_0)(x-x_0) + f_y(x_0,y_0)(y-y_0)$. As we have seen before, it is NOT very easy to deal with limits of multi-variable functions. Lucky us the following theorem can help us to get differentiability without dealing with limits! Theorem If in a disk around a point x, all the partial derivatives are continuous, then f is differentiable at x_0 . Ex. Find all the points where $f(x,y) = \sqrt{x^2 + y^2}$ is differentiable. <u>Solution</u>. (As we have seen before,) $f_{\chi}(x,y) = \frac{\chi}{\sqrt{\chi^2 + y^2}}$ and $f_{y}(x,y) = \frac{y}{\sqrt{\chi^2 + y^2}}$. So f_{χ} and f_{y} are continuous everywhere except possibily at (0,0). Hence for any $(\chi_{o}, y_{o}) \neq (0,0)$, f has continuous partial derivative in a disk centered at (x, y,) with radius smaller than $\sqrt{x_+^2y_-^2}$, e.g. $\frac{1}{2}\sqrt{x_+^2y_-^2}$. Therefore the above theorem implies that f is differentiable at (x_0, y_0) . Next are notice

Lecture 14: Differentiability, approximation
Monday, October 24, 2015 857AM

$$f(x, o) = \sqrt{x^2} = |x|$$
 is not differentiable at $x=o$ as a single-variable
function. So f_x does NOT exist at (0,0), which implies f is not differentiable at (0,0).
Remark $z = \sqrt{x^2y^2}$ is equation of a cone
which clearly does NOT have a tangent
plane at $(0, 0, 0)$.
Ex. Find equation of the tangent plane at $(1, 1, \sqrt{2})$ in the
above example.
Solution: $z = \sqrt{z} + f_x(1, 1) (x - 1) + f_y(1, 1) (y - 1)$
 $= \sqrt{z} + \frac{1}{\sqrt{z}} (x - 1) + \frac{1}{\sqrt{z}} (y - 1)$
 $z = \frac{\sqrt{z}}{2} x + \frac{\sqrt{z}}{2} y$.
Ex. Suppose for $y = \frac{1}{2}$ Co $(\frac{\pi}{2} x^2 y)$. Find linear approximation
of $f(-1, 1, 1, 2)$.
Solution: $f(x, y) \approx f(x_0, y_0) + f_x(x_0, y_0) (x - x_0) + f_y(x_0y_0) (y - y_0)$
 $f_x(x, y) = -xy$ Sin $(\frac{\pi}{2} x^2 y)$ and $f_y(x, y) = -\frac{x^2}{2}$ Sin $(\frac{\pi}{2} x^2 y)$
 $f(-1, 1) = \frac{1}{\pi}$ Cos $(\frac{\pi}{2}) = 0$,
 $f_x(-1, 1) = \text{Sin}(\frac{\pi}{2}) = 1$ and $f_y(-1) = -\frac{1}{2}$ Sin $(\frac{\pi}{2}) = -\frac{1}{2}$

Lecture 14: Approximation Monday, October 24, 2016 9:10 AM So $f(x,y) \approx (x+1) - \frac{1}{2}(y-1)$, which implies $f(-1.1, 1.2) \approx (-0.1) - \frac{1}{2} (0.2) = -0.2$.