Before we move to the next topic, let me explain the formula on the distance of a point from a plane:


$$
\begin{aligned}
\text { dist of } P \text { from this plane } & =\left\|P_{r o j_{0}} \overrightarrow{Q P}\right\| \\
& =\left\|\frac{\overrightarrow{Q P} \cdot \overrightarrow{n_{0}}}{\overrightarrow{n_{0}} \cdot \overrightarrow{n_{0}}} \overrightarrow{n_{0}}\right\| \\
& =\frac{\left|\overrightarrow{Q P} \cdot \overrightarrow{n_{0}}\right|}{\left\|\overrightarrow{n_{0}}\right\|}=\frac{\left|\overrightarrow{O P} \cdot \overrightarrow{n_{0}}-\overrightarrow{O Q} \cdot \overrightarrow{n_{0}}\right|}{\left\|\overrightarrow{n_{0}}\right\|} \\
& =\frac{\left|a x_{0}+b y_{0}+c z_{0}-a x_{1}-b y_{1}-c z_{1}\right|}{\sqrt{a^{2}+b^{2}+c^{2}}} \\
& =\frac{\left|a x_{0}+b y_{0}+c z_{0}-d\right|}{\sqrt{a^{2}+b^{2}+c^{2}}}
\end{aligned}
$$

Ex. Find the distance between two parallel planes

$$
x+2 y+3 z=1 \quad \text { and } \quad x+2 y+3 z=3
$$

Solution. Suppose $P_{0}=\left(x_{0}, y_{0}, z_{\sigma}\right)$ is a point on the first plane. So $x_{0}+2 y_{0}+3 z_{0}=1$. The distance between these parallel planes $=$ dist. from $P_{0}$ to the second plane $=$

$$
\frac{\left|x_{0}+2 y_{0}+3 z_{0}-3\right|}{\sqrt{1^{2}+2^{2}+3^{2}}}=\frac{|1-3|}{\sqrt{14}}=\frac{2 \sqrt{14}}{14}=\frac{\sqrt{14}}{7}
$$

As we discussed before, in life properties of objects depend on many parameters. So we need to work with muttivariable functions.

Ex, (1) $f(x, y)=\ln \left(9-x^{2}-y^{2}\right)$.
(2) $g(x, y)=\sqrt{y^{2}-x}$

Find domain of the above functions.
(1) $9-x^{2}-y^{2}>0$. So $9>x^{2}+y^{2}$


The boundary is NOT included.
(2) $y^{2}-x \geq 0$. So $y^{2} \geq x$.


The boundary is included.

In order to visualize a function and "see" its properties, we sketch its graph (as in the single-variable case.)

Lecture 9: Graph of a two- variable function
Wednesday, October 12, 2016 9:00 AM
Ex. Sketch graph of $f(x, y)=1-x-y$.
Solution. $z=1-x-y$. So $x+y+z=1$. As we know, it is a plane. To sketch it, let's find its intersections with $x, y, z$-axis: $\quad x$-axis $\longrightarrow(1,0,0)$

$$
y \text {-axis } \longrightarrow(0,1,0)
$$

$z$-axis $\longrightarrow(0,0,1)$

Exp. Sketch the graph of $f(x, y)=x^{2}+y^{2}$.
Solution. Two sketch this, let's use contour map and horizontal traces. I.e. we will look at the intersections of graph $z=x^{2}+y^{2}$ of $f$ and planes parallel to $x y, y z, x z$-plans.
 Contour map

$$
\begin{aligned}
& x^{2}+y^{2}=0 \\
& x^{2}+y^{2}=1 \\
& x^{2}+y^{2}=2 \quad x^{2}+y^{2}=3
\end{aligned}
$$



Lecture 9: Graph of two variable functions
Let's look at intersections of $z=x^{2}+y^{2}$ and planes parallel to the $y z$-plane:

$$
\begin{aligned}
& x=0 \leadsto z=y^{2} \\
& x= \pm 1 \mapsto z=y^{2}+1
\end{aligned}
$$



So $z=x^{2}+y^{2}$ (called a paraboloid) looks like


Ex. Sketch graph of $f(x, y)=y^{2}-x^{2}$ and its contour map.
Solution. $z=0$ pu $0=y^{2}-x^{2}$. So $y= \pm x$


Lecture 9: Graph of a two variable function
Thursday, October 13, 2016
12:41 AM


Now intersections with planes parallel to the $y z$-plane:

$$
\begin{aligned}
& x=0 \longmapsto z=y^{2} \\
& x= \pm 1 \not \longmapsto z=y^{2}-1
\end{aligned}
$$

Now intersections with planes parallel to the $x z$-plane:

$$
\begin{aligned}
& y=0 \quad \text { 埌 } \\
& y= \pm 1 \quad \mapsto \quad z=1-x^{2}
\end{aligned}
$$

So overall $z=y^{2}-x^{2}$ looks like a saddle:


