Lecture 8: Volume of a parallelepiped; planes

In the previous lecture we saw that
the volume of the parallelepiped spanned by \vec{v}, \vec{w}, and $\vec{u} \quad=|(\vec{v} \times \vec{w}) \cdot \vec{u}|=\left|\operatorname{det}\left[\begin{array}{l}\vec{v} \\ \frac{\vec{u}}{}\end{array}\right]\right|$.

Ex. Find the volume of the parallelepiped spanned by

$$
\vec{v}=(1,0,1), \vec{w}=(0,2,1) \text { and } \vec{u}=(1,1,0)
$$

Solution. volume $=\left|\operatorname{det}\left[\begin{array}{c}\vec{\nabla} \\ \overrightarrow{\vec{w}} \\ \vec{u}\end{array}\right]\right|=\left|\operatorname{det}\left[\begin{array}{lll}1 & 0 & 1 \\ 0 & 2 & 1 \\ 1 & 1 & 0\end{array}\right]\right|$

$$
\begin{aligned}
& =|1| \begin{array}{ll}
2 & 1 \\
1 & 0
\end{array}|-0| \begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}|+1| \begin{array}{ll}
0 & 2 \\
1 & 1
\end{array}| | \\
& =|-1-2|=3 \text {. }
\end{aligned}
$$

Planes.
A plane can be described in the following ways:
(1) passing through a point $P_{0}=\left(x_{0}, y_{0}, z_{0}\right)$; perpendicular to the vector $\vec{n}_{0}=(a, b, c)$.
$\left(\vec{n}_{0}\right.$ is called a normal vector of this plane.)
(2) passing through a point P_{0}
parallel to two vectors \vec{v} and $\vec{\omega}$
(with the assumption that \vec{v} and $\vec{\omega}$ are NOT parallel.)

Lecture 8: Equations of planes
(3) Passing through three points A, B, C
(with the assumption that they are NOT collinear.)
(4) Parallel to a plane and passes through a point.

Case (1) Passes through $P_{0}=\left(x_{0}, y_{0}, z_{0}\right)$ With normal vector $\vec{n}_{0}=(a, b, c)$, i.e. perpendicular to $\overrightarrow{n_{0}}$.
For any point $\dot{P}=(x, y, z)$ on this plane $\vec{n}_{0} \perp \overrightarrow{P_{0} P}$. So

$$
0=\vec{n}_{0} \cdot \overrightarrow{P_{0} P}=\overrightarrow{n_{0}} \cdot\left(\overrightarrow{O P}-\overrightarrow{O P_{0}}\right)
$$

$$
\vec{n}_{0} \cdot \overrightarrow{o p}=\vec{n}_{0} \cdot \overrightarrow{o p_{0}}
$$

Hence

$$
a x+b y+c z=a x_{0}+b y_{0}+c z_{0}
$$

equation of the plane passing through $\left(x_{0}, y_{0}, z_{0}\right)$; perpendicular to (a, b, c)

Case (2) Passes through $P_{0}=\left(x_{0}, y_{0}, z_{0}\right)$
Parallel to two vectors \vec{v} and \vec{W}.

In order to use Case 1, we need to find a normal vector
\vec{n}_{0}. So we need to find a vector which is perpendicular to \vec{v} and \vec{w}

As we have seen, $\vec{v} \times \vec{w}$ is perpendicular to \vec{V} and \vec{w}. So it is a normal vector of a plane parallel to \vec{v} and \vec{w}. Hence

To find equation of a plane
Passing through P_{0} and
Parallel to \vec{v} and \vec{w}
Use $\vec{n}_{0}=\vec{v} \times \vec{w}$ is a normal vector and use $\overrightarrow{n_{0}} \cdot \overrightarrow{O P}=\vec{n}_{0} \cdot \overrightarrow{O P}$.

Case (3) Passing through A, B, C.
This plane is oing to be parallel to $\overrightarrow{A B}$ and $\overrightarrow{A C}$.
So as in Case (2) we get that
$\vec{n}_{0}=\overrightarrow{A B} \times \overrightarrow{A C}$ is a normal vector of this plane
And then we can make use of $\quad \vec{n}_{0} \cdot \overrightarrow{O P}=\vec{n}_{0} \cdot \overrightarrow{O A}$.
Case (4) Parallel to $a x+b y+c z=d$ and passing through P_{0}.
$\vec{n}_{0}=(a, b, c)$ is a normal vector of $a x+b y+c z=d$,
So \vec{n}_{0} is also perpendicular to the desired plane. Hence We can make use of $\overrightarrow{n_{0}} \cdot \overrightarrow{O P}=\overrightarrow{n_{0}} \cdot \overrightarrow{O P_{0}}$.

As you can see Cose(1): a point P_{0} and a normal vector \vec{n}_{0} is the most important case. In the rest of the cases one would try to reduce to Case (1), ie. find a normal vector.

Ex. Find an equation of a plane which passes through

$$
A=(1,0,1), \quad B=(0,2,1), \text { and } C=(1,2,0) .
$$

Solution. $\vec{n}_{0}=\overrightarrow{A B} \times \overrightarrow{A C}$ is a normal vector

$$
\begin{aligned}
\overrightarrow{A B}=(0,2,1)-(1,0,1)= & (-1,2,0) . \\
\overrightarrow{A C}=(1,2,0)-(1,0,1) & =(0,2,-1) . \\
\overrightarrow{A B} \times \overrightarrow{A C}=\left|\begin{array}{ccc}
\overrightarrow{1} & \vec{j} & \vec{k} \\
-1 & 2 & 0 \\
0 & 2 & -1
\end{array}\right| & =\left|\begin{array}{cc}
2 & 0 \\
2 & -1
\end{array}\right| \vec{i}-\left|\begin{array}{cc}
-1 & 0 \\
0 & -1
\end{array}\right| \vec{j}+\left|\begin{array}{cc}
-1 & 2 \\
0 & 2
\end{array}\right| \vec{k} \\
& =-2 \vec{i}-\vec{j}-2 \vec{k} .
\end{aligned}
$$

So $-2 x-y-2 z=(-2)(1)+(-1)(0)+(-2)(1)$

$$
=-2-2=-4
$$

is an equation of this plane:

$$
2 x+y+2 z=4
$$

Ex. Find an equation of the plane passing through $P_{0}=(1,1,1)$ and parallel to $x-y+z=3$.

Solution. $(1,-1,1)$ is a common normal vector. So $x-y+z=1-1+1=1$ is an equation of this plane.

Lecture 8: Distance of a point from a plane Monday, October 10, 2016 1:10 AM

Question. Given a point $P_{0}=\left(x_{0}, y_{0}, z_{0}\right)$ and a plane $a x+b y+c z=d$. How can we find the distance of P_{0} from this plane?

Distance of P_{0} from this plane $=P_{0} H$
$\overrightarrow{H P_{0}}$ is the orthogonal projection of $\overrightarrow{Q P_{0}}$ along \vec{n}_{0} where $Q=\left(x_{1}, y_{1}, z_{1}\right)$ is any point on this plane. Hence

$$
\begin{aligned}
\text { distance } & =\left\|\operatorname{Proj}_{\vec{n}_{0}} \overrightarrow{Q P_{0}}\right\|=\left|\frac{\vec{n}_{0} \cdot \overrightarrow{Q P_{0}}}{\overrightarrow{n_{0}} \cdot \vec{n}_{0}}\right|\left\|\vec{n}_{0}\right\| \\
& =\frac{\left|\vec{n}_{0} \cdot \overrightarrow{O P}_{0}-\vec{n}_{0} \cdot \overrightarrow{O Q}\right|}{\left\|\vec{n}_{0}\right\|^{2}} \cdot\left\|\vec{n}_{0}\right\| \\
\rightarrow & \overrightarrow{ }
\end{aligned}
$$

Since $\vec{n}_{0} \cdot \overrightarrow{O Q}=a x_{1}+b y_{1}+c z_{1}=d$, we have

Lecture 8: Distance of a point from a plane

Overall we get
The distance of $P_{0}=\left(x_{0}, y_{0}, z_{0}\right)$ from the plane $a x+b y+c z=d$ is

$$
\frac{\left|a x_{0}+b y_{0}+c z_{0}-d\right|}{\sqrt{a^{2}+b^{2}+c^{2}}}
$$

