Lecture 7: Geometric properties of cross product

In the previous lecture we showed

$$
\begin{aligned}
(\vec{v} \times \vec{w}) \cdot \vec{u}=\left|\begin{array}{lll}
a_{1} & b_{1} & c_{1} \\
a_{2} & b_{2} & c_{2} \\
a_{3} & b_{3} & c_{3}
\end{array}\right| \quad \text { if } \quad \vec{v} & =\left(a_{1}, b_{1}, c_{1}\right) \\
\vec{w} & =\left(a_{2}, b_{2}, c_{2}\right) \\
\vec{u} & =\left(a_{3}, b_{3}, c_{3}\right) .
\end{aligned}
$$

In particular, $(\vec{v} \times \vec{w}) \cdot \vec{v}=\left|\begin{array}{lll}a_{1} & b_{1} & c_{1} \\ a_{2} & b_{2} & c_{2} \\ a_{1} & b_{1} & c_{1}\end{array}\right|=0$
and $\quad(\vec{\nabla} \times \vec{w}) \cdot \vec{w}=\left|\begin{array}{lll}a_{1} & b_{1} & c_{1} \\ a_{2} & b_{2} & c_{2} \\ a_{2} & b_{2} & c_{2}\end{array}\right|=0$
So $\vec{v} \times \vec{w}$ is perpendicular to both \vec{v} and \vec{w}. Therefore it is perpendicular to the plane spanned by \vec{v} and \vec{w}.

Therefore
$\vec{v} \times \vec{W}$ has two possible directions.

To determine which one is the correct direction, one has to use right-hand rule.

Lecture 7: Geometric properties of cross product

Fingers of your right hand should curl from the direction of \vec{v} towards the direction of $\vec{\omega}$. Then your thumb gives you the direction of $\vec{v}_{\times} \vec{w}$.

Now that we know how to find the direction of $\vec{v} \times \vec{w}$, let's look for its length. One can check the following equality:

$$
\begin{aligned}
& \left|\vec{v} \times \vec{w}\left\|^{2}+|\vec{v} \cdot \vec{w}|^{2}=\right\| \vec{v}\left\|^{2}\right\| \vec{w} \|^{2} .\right. \\
& \quad \begin{array}{l}
\vec{v} \times \vec{w}=\left(b_{1} c_{2}-b_{2} c_{1}, c_{1} a_{2}-a_{1} c_{2}, a_{1} b_{2}-b_{1} a_{2}\right) \\
\Rightarrow\|\vec{v} \times \vec{w}\|^{2}+|\vec{v} \cdot \vec{w}|^{2}=\left(b_{1} c_{2}-b_{2} c_{1}\right)^{2}+\left(c_{1} a_{2}-a_{1} c_{2}\right)^{2}+\left(a_{1} b_{2}-b_{1} a_{2}\right)^{2} \\
\quad+\left(a_{1} a_{2}+b_{1} b_{2}+c_{1} c_{2}\right)^{2} \\
=b_{1}^{2} c_{2}^{2}+b_{2}^{2} c_{1}^{2}-2 b_{1} b_{2} c_{1} c_{2}+c_{1}^{2} a_{2}^{2}+a_{1}^{2} c_{2}^{2}-2 a_{1} a_{2} c_{1} c_{2} \\
+a_{1}^{2} b_{2}^{2}+b_{1}^{2} a_{2}^{2}-2 a_{1} a_{2} b_{1} b_{2}+a_{1}^{2} a_{2}^{2}+b_{1}^{2} b_{2}^{2}+c_{1}^{2} c_{2}^{2}+ \\
2 a_{1} a_{2} b_{1} b_{2}+2 a_{1} a_{2} c_{1} c_{2}+2 b_{1} b_{2} c_{1} c_{2}=\left(a_{1}^{2}+b_{1}^{2}+c_{1}^{2}\right)\left(a_{2}^{2}+b_{2}^{2}+c_{2}^{2}\right)
\end{array}
\end{aligned}
$$

Lecture 7: Geometric understanding of cross product

II have included the reasoning above, but in this you are expected to know only how to use the following conclusion-]
Hence $\quad\|\vec{V} \times \vec{w}\|^{2}=\|\vec{V}\|^{2}\|\vec{w}\|^{2}-(\vec{v} \cdot \vec{w})^{2}$

$$
\begin{aligned}
& =\|\vec{v}\|^{2}\|\vec{w}\|^{2}-\|\vec{v}\|^{2}\|\vec{w}\|^{2} \cos ^{2} \theta \\
& =\|\vec{v}\|^{2}\|\vec{w}\|^{2}\left(1-\cos ^{2} \theta\right) \\
& =\|\vec{v}\|^{2}\|\vec{w}\|^{2} \sin ^{2} \theta
\end{aligned}
$$

Hence $\quad\|\vec{V} \times \vec{w}\|=\|\vec{v}\|\|\vec{w}\| \sin \theta$
where θ is the angle between \vec{V} and \vec{W}
(and $\quad 0 \leq \theta \leq \pi$.)

Ex. Sketch $\vec{v} \times \vec{w}$ in the following figure:

Solution. $\vec{v} \times \vec{w}$ is perpendicular to the plane spanned by \vec{v} and \vec{w}. So it is perpendicular to the $x z$-plane. Hence it is parallel to the y-axis. Using the Right-Hand Rule, we see

Lecture 7: Geometric applications of cross product
that $\vec{v} \times \vec{w}$ is towards the positive direction of y-axis.
We also know

$$
\begin{aligned}
\|\vec{v} \times \vec{w}\| & =\|\vec{v}\|\|\vec{w}\| \sin \theta=(1)(2) \sin \left(30^{\circ}\right) \\
& =(1)(2)(1 / 2)=1
\end{aligned}
$$

Hence $\vec{v} \times \vec{w}=\vec{j}$.
Area of a parallelogram

$$
\begin{aligned}
\vec{v} \| & \text { Area }
\end{aligned}=(\text { height })(\text { base }) ~=(\|\vec{v}\| \sin \theta)\|\vec{w}\|
$$

Ex. Find the area of the triangle $A B C$ where

$$
A=(1,2,0), \quad B=(0,1,2), \quad C=(1,1,1) .
$$

Solution. Area of $A B C$

$$
=\frac{1}{2} \text { area of } A B C D
$$

$$
\begin{aligned}
& =\frac{1}{2}\|\overrightarrow{A B} \times \overrightarrow{A C}\| \\
& \overrightarrow{\overrightarrow{A B}}=(0,1,2)-(1,2,0)=(-1,-1,2) . \\
& \overrightarrow{A C}=(1,1,1)-(1,2,0)=(0,-1,1) .
\end{aligned}
$$

Lecture 7: Geometric applications of cross product

$$
\begin{aligned}
\overrightarrow{A B} \times \overrightarrow{A C} & =\left|\begin{array}{ccc}
\vec{i} & \vec{j} & \vec{k} \\
-1 & -1 & 2 \\
0 & -1 & 1
\end{array}\right|=\left|\begin{array}{cc}
-1 & 2 \\
-1 & 1
\end{array}\right| \vec{i}-\left|\begin{array}{cc}
-1 & 2 \\
0 & 1
\end{array}\right| \vec{j}+\left|\begin{array}{cc}
-1 & -1 \\
0 & -1
\end{array}\right| \vec{k} \\
& =(-1+2) \vec{i}+\vec{j}+\vec{k}=(1,1,1) .
\end{aligned}
$$

So $\|\overrightarrow{A B} \times \overrightarrow{A C}\|=\sqrt{1^{2}+1^{2}+1^{2}}=\sqrt{3}$.
Hence area of $A B C=\frac{\sqrt{3}}{2}$.

volume $=($ height $)$ ($\underbrace{\text { area of the base) }}$
area of the parallelogram spanned by \vec{v} and $\vec{\omega}$.

$$
=(\text { height }\|\vec{v} \times \vec{w}\|
$$

$\vec{V} \times \vec{W}$ is perpendicular to the base. Hence $\vec{v} \times \vec{W}$ is parallel to the height. I am going to draw $\vec{v} \times \vec{w}, \vec{u}$, and the height separately (above figure on the right). So height $=\|\vec{u}\||\cos \theta|$

Lecture 7: Volume of a parallelepiped
Friday, October 7, 2016 1:28 PM
where θ is the angle between $\vec{v} \times \vec{w}$ and \vec{u}. Thus

$$
\begin{aligned}
\text { volume } & =(\|\vec{u}\||\cos \theta|)\|\vec{v} \times \vec{w}\| \\
& =|\|\vec{\nabla} \times \vec{w}\|\|\vec{u}\| \cos \theta| \\
& =|(\vec{v} \times \vec{w}) \cdot \vec{u}|
\end{aligned}
$$

So we end up with the following formulas:

$$
\begin{aligned}
\text { volume } & =|(\vec{v} \times \vec{w}) \cdot \vec{u}| \\
\text { volume } & =\left|\operatorname{det}\left[\begin{array}{lll}
a_{1} & b_{1} & c_{1} \\
a_{2} & b_{2} & c_{2} \\
a_{3} & b_{3} & c_{3}
\end{array}\right]\right|
\end{aligned}
$$

where $\vec{v}=\left(a_{1}, b_{1}, c_{1}\right), \vec{w}=\left(a_{2}, b_{2}, c_{2}\right)$ and $\vec{u}=\left(a_{3}, b_{3}, c_{3}\right)$.

