In the previous lecture we defined the determinant of a 2×2 $\operatorname{matrix}\left|\begin{array}{ll}a & b \\ c & d\end{array}\right|=a d-b c$.
Determinant of a 3×3 matrix is defined as follows:

$$
\left|\begin{array}{lll}
a_{1} & b_{1} & c_{1} \\
a_{2} & b_{2} & c_{2} \\
a_{3} & b_{3} & c_{3}
\end{array}\right|=+a_{1}\left|\begin{array}{ll}
b_{2} & c_{2} \\
b_{3} & c_{3}
\end{array}\right|-b_{1}\left|\begin{array}{ll}
a_{2} & c_{2} \\
a_{3} & c_{3}
\end{array}\right|+c_{1}\left|\begin{array}{ll}
a_{2} & b_{2} \\
a_{3} & b_{3}
\end{array}\right|
$$

Ex. $\left|\begin{array}{lll}1 & 0 & 0 \\ 4 & 2 & 0 \\ 6 & 5 & 3\end{array}\right|=1\left|\begin{array}{ll}2 & 0 \\ 5 & 3\end{array}\right|-0\left|\begin{array}{ll}4 & 0 \\ 6 & 3\end{array}\right|+0\left|\begin{array}{cc}4 & 2 \\ 6 & 5\end{array}\right|$

$$
=1((2)(3)-(0)(5))=6
$$

$\left(\ln\right.$ fact $\left.\left|\begin{array}{lll}a_{1} & 0 & 0 \\ b_{1} & a_{2} & 0 \\ c_{1} & b_{2} & a_{3}\end{array}\right|=a_{1} a_{2} a_{3}\right)$
Ex. $\left|\begin{array}{lll}a & b & c \\ x & y & z \\ x & y & z\end{array}\right|=a\left|\begin{array}{ll}y & z \\ y & z\end{array}\right|-b\left|\begin{array}{ll}x & z \\ x & z\end{array}\right|+c\left|\begin{array}{ll}x & y \\ x & y\end{array}\right|$

$$
=(a)(0)-(b)(0)+(c)(0)
$$

$$
=0
$$

Lecture 6: Determinant 3×3, cross product
Wednesday, October 5,2016 9:44 AM
Ex. $\left|\begin{array}{lll}1 & 1 & 1 \\ 1 & 2 & 4 \\ 1 & 3 & 9\end{array}\right|=1\left|\begin{array}{ll}2 & 4 \\ 3 & 9\end{array}\right|-1\left|\begin{array}{ll}1 & 4 \\ 1 & 9\end{array}\right|+1\left|\begin{array}{ll}1 & 2 \\ 1 & 3\end{array}\right|$

$$
=(18-12)-(9-4)+(3-2)
$$

$$
=2
$$

Remark. $\left|\begin{array}{lll}1 & a & a^{2} \\ 1 & b & b^{2} \\ 1 & c & c^{2}\end{array}\right|=(c-a)(c-b)(b-a)$
It is a special case of Vandermonde's determinant.

$$
\begin{aligned}
\text { Ex. }\left|\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9
\end{array}\right| & =1\left|\begin{array}{ll}
5 & 6 \\
8 & 9
\end{array}\right|-2\left|\begin{array}{ll}
4 & 6 \\
7 & 9
\end{array}\right|+3\left|\begin{array}{ll}
4 & 5 \\
7 & 8
\end{array}\right| \\
& =(45-48)-2(36-42)+3(32-35) \\
& =-3-2 \times(-6)+3 \times(-3) \\
& =0 .
\end{aligned}
$$

You will see the importance of determinant in linear algebra. In this course we use it to understand crass product and its geometric properties.

Definition suppose $\vec{v}=\left(x_{1}, y_{1}, z_{1}\right)$ and $\vec{w}=\left(x_{2}, y_{2}, z_{2}\right)$.
Then cross product of \vec{v} and \vec{w} is $\vec{v} \times \vec{w}=\left|\begin{array}{lll}\vec{i} & \vec{j} & \vec{k} \\ x_{1} & y_{1} & z_{1} \\ x_{2} & y_{2} & z_{2}\end{array}\right|$

Lecture 6: Cross product

It is a symbolic determinant; which means

$$
\vec{\nabla} \times \vec{w}=\left|\begin{array}{ccc}
\vec{i} & \vec{j} & \vec{k} \\
x_{1} & y_{1} & z_{1} \\
x_{2} & y_{2} & z_{2}
\end{array}\right|=\left|\begin{array}{ll}
y_{1} & z_{1} \\
y_{2} & z_{2}
\end{array}\right| \vec{i}-\left|\begin{array}{ll}
x_{1} & z_{1} \\
x_{2} & z_{2}
\end{array}\right| \vec{j}+\left|\begin{array}{ll}
x_{1} & y_{1} \\
x_{2} & y_{2}
\end{array}\right| \vec{k}
$$

Ex. $\vec{i} \times \vec{j}=\left|\begin{array}{ccc}\vec{i} & \vec{j} & \vec{k} \\ 1 & 0 & 0 \\ 0 & 1 & 0\end{array}\right|=\left|\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right| \vec{i}-\left|\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right| \vec{j}+\left|\begin{array}{cc}1 & 0 \\ 0 & 1\end{array}\right| \vec{k}$

Remark.

$$
\begin{aligned}
& \vec{i} \times \vec{j}=\vec{k} \\
& \vec{j} \times \vec{k}=\vec{i} \\
& \vec{k} \times \vec{i}=\vec{j}
\end{aligned}
$$

Ex. $\vec{v} \times \vec{v}=\left|\begin{array}{lll}\vec{i} & \vec{j} & \vec{k} \\ x & y & z \\ x & y & z\end{array}\right|=(0,0,0)=\overrightarrow{0}$.
Algebraic Properties of Cross Product.
(1) $\vec{v} \times\left(\vec{\omega}_{1}+\vec{\omega}_{2}\right)=\vec{v} \times \vec{\omega}_{1}+\vec{v} \times \vec{\omega}_{2} \quad$ \} distribution
(2) $\left(\vec{v}_{1}+\vec{v}_{2}\right) \times \vec{\omega}=\vec{v}_{1} \times \vec{\omega}+\vec{v}_{2} \times \vec{\omega}$
(3) $(c \vec{v}) \times \vec{\omega}=\vec{v} \times(c \vec{\omega})=c(\vec{v} \times \vec{v})$.
(4) $\vec{v} \times \vec{\omega}=-\vec{\omega} \times \vec{v}$.

Lecture 6: Algebraic properties of cross product
Using algebraic properties and "the $\overrightarrow{1}, \vec{j}, \vec{k}$ wheel" we can compute cross product without determinant.
Ex. Find $(2 \vec{i}+\vec{j}) \times(\vec{i}-3 \vec{k})$.
Solution. $(2 \vec{i}+\vec{j}) \times(\vec{i}-3 \vec{k})$

$$
\begin{aligned}
& =(2 \vec{i}) \times \vec{i}+(2 \vec{i}) \times(-3 \vec{k})+\vec{j} \times \vec{i}+\vec{j} \times(-3 \vec{k}) \\
& =2 \vec{i} \times \vec{i}-6 \vec{i} \times \vec{k}+\vec{j} \times \vec{i}-3 \vec{j} \times \vec{k} \\
& \overrightarrow{0}
\end{aligned}
$$

Counter clockwise
So $-\vec{j} \cdot$ So $-\vec{k}$

$$
=6 \vec{j}-\vec{k}-3 \vec{i}
$$

Ex. Suppose $\vec{v} \times \vec{w}=(1,2,3)$. Find $(2 \vec{v}-\vec{w}) \times(\vec{v}+3 \vec{w})$.
Remark. In this example, you see that knowing $\vec{v} \times \vec{w}$ one can compute cross product of any two linear combinations of \vec{v} and \vec{w}.

Solution. $(2 \vec{v}-\vec{w}) \times(\vec{v}+3 \vec{w})=2 \vec{v} \times \vec{v}+6 \vec{v} \times \vec{w}-\vec{w} \times \vec{v}-3 \vec{w} \times \vec{w}$ $=6 \vec{v} \times \vec{w}+\vec{v} \times \vec{w}=7 \vec{v} \times \vec{w}=(7,14,21)$.

Lecture 6: Geometric properties of cross product
$\vec{v} \times \vec{W}$ is a vector and any vector carries two information: direction and length.
To understand direction of $\vec{v} \times \vec{w}$ we start with a dot product computation:

Let $\vec{v}=\left(a_{1}, b_{1}, c_{1}\right), \vec{w}=\left(a_{2}, b_{2}, c_{2}\right)$, and $\vec{u}=\left(a_{3}, b_{3}, c_{3}\right)$.
Then

$$
\begin{aligned}
(\vec{v} \times \vec{w}) \cdot \vec{u} & =\left|\begin{array}{lll}
\vec{i} & \vec{j} & \vec{k} \\
a_{1} & b_{1} & c_{1} \\
a_{2} & b_{2} & c_{2}
\end{array}\right| \cdot\left(a_{3}, b_{3}, c_{3}\right) \\
& \left.=\left|\begin{array}{ll}
b_{1} & c_{1} \\
b_{2} & c_{2}
\end{array}\right| \vec{i}-\left|\begin{array}{ll}
a_{1} & c_{1} \\
a_{2} & c_{2}
\end{array}\right| \vec{j}+\left|\begin{array}{ll}
a_{1} & b_{1} \\
a_{2} & b_{2}
\end{array}\right| \vec{k}\right) \cdot\left(a_{3}, b_{3}, c_{3}\right) \\
& =\left|\begin{array}{ll}
b_{1} & c_{1} \\
b_{2} & c_{2}
\end{array}\right| a_{3}-\left|\begin{array}{ll}
a_{1} & c_{1} \\
a_{2} & c_{2}
\end{array}\right| b_{3}+\left|\begin{array}{ll}
a_{1} & b_{1} \\
a_{2} & b_{2}
\end{array}\right| c_{3} \\
& =\left|\begin{array}{lll}
a_{3} & b_{3} & c_{3} \\
a_{1} & b_{1} & c_{1} \\
a_{2} & b_{2} & c_{2}
\end{array}\right|=-\left|\begin{array}{lll}
a_{1} & b_{1} & c_{1} \\
a_{3} & b_{3} & c_{3} \\
a_{2} & b_{2} & c_{2}
\end{array}\right|
\end{aligned}
$$

Hence

$$
(\vec{v} \times \vec{w}) \cdot \vec{u}=\left|\begin{array}{lll}
a_{1} & b_{1} & c_{1} \\
a_{2} & b_{2} & c_{2} \\
a_{3} & b_{3} & c_{3}
\end{array}\right|
$$

