Lecture 5: Geometric applications of dot product
Monday, October 3, 2016 B35AM
In the previous lecture are saids that

$$\vec{v}.\vec{\omega} = \|\vec{v}\| \|\vec{\omega}\|$$
 Gs \oplus where \oplus is the angle between
 \vec{v} and $\vec{\omega}$.
Ex. Find the angle between $\vec{v} = (1,\sqrt{2},1)$ and $\vec{\omega} = (1,0,0)$.
Solution. Cas $\Theta = \frac{\vec{v}.\vec{\omega}}{\|\vec{v}\| \|\vec{\omega}\|}$. So use need to compute
 $\|\vec{v}.\vec{\omega}, \|\vec{v}\|$, and $\|\vec{\omega}\|$.
 $\vec{v}.\vec{\omega} = 1$, $\|\vec{v}\| = \sqrt{(1)^2 + (\sqrt{2})^2 + (4)^2} = 2$, $\|\vec{\omega}\| = 1$
So $\cos \Theta = \frac{1}{2}$, which implies $\Theta = \frac{\pi}{3}$.
Ex. Determine whether \vec{v} and $\vec{\omega}$ are perpendicular or the
angle between them is obtuse.
(1) $\vec{v} = (1,2,3)$ and $\vec{\omega} = (-1,-1,1)$.
(2) $\vec{v} = (1,2,3)$ and $\vec{\omega} = (-1,0,1)$.
(3) $\vec{v} = (1,2,3)$ and $\vec{\omega} = (-1,0,1)$.
(4) $\vec{v} = (1,2,3)$ and $\vec{\omega} = (-1,0,1)$.
(5) $\vec{v} = (1,2,3)$ and $\vec{\omega} = (-1,0,1)$.
(6) $\vec{v} = (1,2,3)$ and $\vec{\omega} = (-1,0,1)$.
(7) $\vec{v} = (3,3)$ and $\vec{\omega} = (-1,0,1)$.

Lecture 5: Orthogonal projection Monday, October 3, 2016 8:54 AM Let's start with a geometric interpretation of inner product. <u></u>ζθ (Orthogonal) Projection of J along w $\|\operatorname{Proj}_{\overrightarrow{W}} \overrightarrow{\nabla}\| = \|\overrightarrow{\nabla}\| |_{\operatorname{Cos}} \Theta| = \|\overrightarrow{\nabla}\| \frac{|\overrightarrow{\nabla} \cdot \overrightarrow{W}|}{\|\overrightarrow{\nabla}\| \|\overrightarrow{W}\|}$ So $\|\operatorname{Proj}_{\overrightarrow{w}} \overrightarrow{\nabla}\| = \frac{|\overrightarrow{\nabla} \cdot \overrightarrow{w}|}{\|\overrightarrow{w}\|}$ and $|\overrightarrow{\nabla} \cdot \overrightarrow{w}| = \|\overrightarrow{\omega}\| \|\operatorname{Proj}_{\overrightarrow{w}} \overrightarrow{\nabla}\|$ And $\operatorname{Proj}_{\overrightarrow{\omega}}$ is parallel to $\overrightarrow{\omega}$. So the unit vector in its direction is $\pm \overrightarrow{\omega}$. Its sign depends on whether Θ is acute or obtuse. Hence a closer examination implies $\operatorname{Proj}_{\overrightarrow{\omega}} \overrightarrow{v} = \frac{\overrightarrow{v} \cdot \overrightarrow{\omega}}{\|\overrightarrow{\omega}\|} \|\overrightarrow{\omega}\|$ And so $\Pr_{\vec{v}} \vec{v} = \frac{\vec{v} \cdot \vec{\omega}}{\vec{\omega} \cdot \vec{\omega}} \vec{\omega}$ Show that $AC^{2} = (AB)(AE) + (AD)(AF)$. Challenge Problem. #

Lecture 5: Geometric applications of dot product Monday, October 3, 2016 9:10 AM Ex. Find all values of x for which $(\chi, 1, 2) \perp (-1, 2, \chi)$. Solution. $(\chi, 1, 2) \perp (-1, 2, \chi)$ if and only if $o = (\chi, 1, 2) \cdot (-1, 2, \chi) = -\chi + 2 + 2\chi$ And so $\chi = 2$. Ex. Find the projection of $\vec{V} = (1,2,3)$ along $\vec{\omega} = (2,0,-1)$. Solution. Proj $\vec{V} = \frac{\vec{V} \cdot \vec{W}}{\vec{W}} \vec{W}$ $= \frac{(1)(2) + (2)(0) + (3)(-1)}{(2)(2) + (0)(0) + (-1)(-1)} (2,0,-1)$ $=\left(\frac{-2}{5}, 0, \frac{1}{5}\right)$