Let me recall that in the previous lecture we saw
A moving particle with the initial position $P_{0}=\left(x_{0}, y_{0}, z_{0}\right)$ and constant velocity $\vec{V}_{0}=(a, b, c)$ reach to the point P_{t} at time t where

$$
\overrightarrow{O P}=t \vec{V}_{0}+\overrightarrow{O P_{0}}
$$

Application to Geometry.
As we keep track of a particle with constant velocity, we realize that it is moving on a line which passes through P_{0} and is parallel to \vec{v}_{0}. So we get the following:

Line passing through $P_{0}=\left(x_{0}, y_{0}, z_{0}\right)$ and parallel to the vector $\vec{v}_{0}=(a, b, c)$ is given by

$$
\begin{gathered}
\overrightarrow{O P}=t \vec{v}_{0}+\overrightarrow{O P_{0}} \\
\left\{\begin{array}{l}
x=a t+x_{0} \\
y=b t+y_{0} \\
z=c t+z_{0}
\end{array}\right. \\
\frac{x-x_{0}}{a}=\frac{y-y_{0}}{b}=\frac{z-z_{0}}{c}
\end{gathered}
$$ vector parametric equation parametric equations

with the understanding that, if $a=0$, then $x=x_{0}$ or similarly $b=0$ implies $y=y_{0 \prime}$ $c=0$ implies $z=z_{0}$

Ex. Find parametric equation of a line which passes throng the point $P_{\sigma}=(1,2,0)$ and it is parallel to the vector
$\overrightarrow{A B}$ where $A=(1,1,0)$ and $B=(1,0,1)$.
Solution. A vector-parametric equation of this line is

$$
\overrightarrow{O P}=\overrightarrow{O P_{0}}+t \overrightarrow{A B}
$$

So we need to compute $\overrightarrow{A B}$.

$$
\overrightarrow{A B}=(\underbrace{(1,0,1)}_{\text {terminal }}-\underbrace{(1,1,0)}_{\text {initial }}=(0,-1,1)
$$

So $\begin{cases}x=1 & \text { parametric equation of } \\ y=2-t & \text { this line. }\end{cases}$
Ex. Find parametric equation of a line which passes through the points $A=(1,1,0)$ and $B=(1,0,1)$. Solution. So this line passes through A and it is parallel to $\overrightarrow{A B}$. So its vector-parametric equation is $\overrightarrow{O F}=\overrightarrow{O A}+t \overrightarrow{A B}=(1,1,0)+t(\underbrace{0,-1,1)}$

$$
\Rightarrow\left\{\begin{array}{l}
x=1 \\
y=1-t \\
z=t
\end{array}\right.
$$

Lecture 3: Parametrization of a segment
How can we parametrize a segment $A B$?
. It is clearly part of the line which passes through the points A and B so any point P on this segment is of the form $\overrightarrow{O P}=\overrightarrow{O A}+t \overrightarrow{A B}$.
. What range of t gives us points on the segment $A B$?
. Think about a moving particle with initial point A and constant velocity $\overrightarrow{A B}$. For what interval of time is this particle moving between A and B ?

At $t=0$ it is at A, and at $t=1$ its positional vector is $\overrightarrow{O A}+\overrightarrow{A B}=\overrightarrow{O B}$. So for $0 \leq t \leq 1$ it is on the segment $A B$. Hence

$$
\begin{aligned}
\overrightarrow{O P} & =\overrightarrow{O A}+t \overrightarrow{A B} \\
& =\overrightarrow{O A}+t(\overrightarrow{O B}-\overrightarrow{O A})=(1-t) \overrightarrow{O A}+t \overrightarrow{O B}
\end{aligned}
$$

for $0 \leq t \leq 1$ is a parametrization of the segment $A B$

Lecture 3: Midpoint, inner product
Let's also notice at $t=\frac{1}{2}$, the above particle reaches to the midpoint M of the segment $A B$. So

$$
\overrightarrow{O M}=\frac{1}{2} \overrightarrow{O A}+\frac{1}{2} \overrightarrow{O B}
$$

. One of the key algebraic operations between vectors is the dot-product of two vectors:

$$
\vec{v}_{1}=\left(x_{1}, y_{1}, z_{1}\right) \text { and } \vec{v}_{2}=\left(x_{2}, y_{2}, z_{2}\right)
$$

Then $\vec{v}_{1} \cdot \vec{v}_{2}=x_{1} x_{2}+y_{1} y_{2}+z_{1} z_{2}$.
Warming 1. Dot-product $\vec{v}_{1} \cdot \vec{v}_{2}$ is a number. It is NOT a 3D-vector.

Warning 2. Please do NOT write

$$
\left(x_{1}, y_{1}, z_{1}\right) \cdot\left(x_{2}, y_{2}, z_{2}\right)=x_{1} x_{2} \quad y_{1} y_{2} \quad z_{1} z_{2}
$$

It has No meaning.
Ex. Let $\vec{v}=(1,2,3)$ and $\vec{\omega}=(-1,0,1)$. Then $\vec{v} \cdot \vec{w}=(1)(-1)+(2)(0)+(3)(1)=2$.
$\vec{v} \cdot \vec{i}=1$ first component of \vec{v} $\vec{w} \cdot \vec{j}=0$.

