Lecture 21: Splices and their description

Tuesday, March 14, 2017 10:58 AM

Lecture 21: Intersection of nbhds of maximal flats
Thurday, March 16, 2017 12:06 MM
It is clear that ~ defines an equivalence relation. The mentioned
geometric ingredient implies that

$$F \underset{\mathbf{x}}{\operatorname{F}_{\mathbf{x}}} \overline{F_{o}} \sim N_{d(\mathbf{x},F_{o})}(F_{o}) \cap F$$

if non-empty.
Corollary. For any $r_{i}, r_{2i}s_{i}, s_{2}$ and two flats F_{i} and F_{2} ,
 $N_{r_{i}}(F_{i}) \cap N_{r_{2}}(F_{2}) \sim N_{s_{i}}(F_{i}) \cap N_{s_{2}}(F_{2})$
if non-empty.
Restep 1. $d(\mathbf{x}, F_{i}) < r_{i} \Rightarrow d(\mathbf{x}, p_{T_{i}}(\mathbf{x})) < r_{i} \Rightarrow d(p_{T_{i}}(\mathbf{x}_{i}), p_{T_{i}}, p_{i})$
is less than $r_{1}r_{2} \cdot S_{0} \quad p_{T_{2}}(\mathbf{x}_{2}) \in N_{r_{1}}(F_{i}) \cap F_{2}$.
Step 2. $N_{r_{1}}(F_{i}) \cap F_{2} \Rightarrow d(\mathbf{x}_{2}, p_{T_{i}}, \mathbf{x}_{2}) < r_{i}+r_{2}$. Let $y_{e}[x_{2}, r_{T_{i}}^{n}]$
st. $d(y_{i}, x_{2})/d(x_{2}, p_{T_{i}}, x_{2}) < r_{2}/r_{i}+r_{2}$ (if $x_{2} \in F_{i}$, are are done).
 $\Rightarrow d(y_{i}, x_{2})/d(x_{2}, p_{T_{i}}, x_{2}) < r_{i}/r_{i}(F_{i}) \cap F_{2}$ and if one of them
is non-empty so is the other one.

Lecture 21: Sets of finite Hausdorff distance under a QI Thursday, March 16, 2017 8:35 AM So it is enough to show Step3. Nr (Fi) n F2 ~ Ns (Fi) n F2 if non-empty. Pf of step 3. Suppose x = Ns(Fi) n F2 n Nr(Fi). Then by the key geometric ingredient we have : Ns(F1) n F2 ~ F2 hr F1 ~ Nr(F1)~F2 $if \quad F_2 \mapsto F_1 \neq \phi .$ If F2 to F1 = \$, by convexity of Ns(F1)~F2 and compactness of space of directions we get that Ns(Fi) nFz and Nr(Fi) nFz are bounded. Observation ϕ is a QI $\Rightarrow \cdot Y \sim Y$ if and only if $\phi(Y) \sim \phi(Y)$. $\varphi: X_1 \longrightarrow X_2$ • $\phi^{-1}(\phi(\Upsilon)) \sim \Upsilon$ and the implied constants depend only on the QI parameters.

Lecture 21: Map on the set of the classes of splices Thursday, March 16, 2017 9:00 AM Proposition Suppose $S := F_1 \xrightarrow{X} F_1'$ is a splice in X_1 . Then $\Phi(F_1 \underset{X_1}{\longrightarrow} F_1') \sim \overline{\Phi}(F_1) \underset{X_2}{\longrightarrow} \overline{\Phi}(F_2)$ for any $x_2 \in \overline{\Phi}(F_1)$ $\frac{\mathbb{P}P}{\mathbb{P}} \quad \varphi(F_1 \underset{x_1}{\longmapsto} F_1') \sim \varphi(\mathbb{N}_{\gamma_1}(F_1) \cap F_2) \quad \text{if } r_1 > d(F_1', x_1)$ $\sim \varphi \left(N_{r_{1}+0,c_{1}}^{}(F_{1}) \cap N_{r_{2}+0,c_{1}}^{}(F_{2}) \right)$ $\wedge \varphi \left(\varphi^{-1} (\varphi (N_{r_1}(F_1)) \cap \varphi^{-1} (\varphi (N_{r_2}(F_2))) \right)$ $= \Phi(N_{r_1}(F_1)) \cap \Phi(N_{r_2}(F_2))$ Since ϕ is surjective $\sum_{\substack{n \neq C \\ n \neq C}} \sum_{\substack{n \neq C}} \sum_{\substack{n \neq C \\ n \neq C}} \sum_{\substack{n \neq C \\ n \neq C}} \sum_{\substack{n \neq C}} \sum$ $N_{\gamma^{-1}r-C}(\varphi(\gamma)) \subseteq \varphi(N_{r}(\gamma)) \subseteq N_{\gamma^{r+C}}(\varphi(\gamma)).$ ~ $N_{O(r_1)}(\overline{\oplus}(F_1)) \cap N_{O(r_2)}(\overline{\oplus}(F_2))$ previous corollary for rirz >1. $\overline{\Phi}(F_1) \longmapsto \overline{\Phi}(F_2)$ for any $x_2 \in \overline{\Phi}(F_1)$.

Lecture 21: Map on the set of the classes of splices Thursday, March 16, 2017 10:39 AM Let $S(X) := \{ [F_{W}, F'] \mid F, F' \in \mathcal{F}_{X} \}$. Corollary. $\exists a \Gamma_{equivariant} bijection \phi^* : S(X_1) \rightarrow S(X_2).$ st. $\varphi^*(S) = [\varphi(S)]$. $\frac{Pf}{x} \cdot \text{Let } \varphi^*([F_i \mapsto F_i']) := [\overline{\varphi}(F_i) \mapsto \overline{\varphi}(F_i')].$ $\stackrel{Pr}{=} (\varphi^{(\chi)}) \xrightarrow{Pr}_{\overline{\varphi}(F_i)} (\varphi^{(\chi)})$ $\stackrel{H}{=} \text{ is easy to see that } \varphi^* \text{ is } \Gamma - \text{equivariant.}$ By the previous proposition we have $[\Phi(S)] = \Phi^*(ISJ)$ for any splice S Since $\overline{\Phi}$ is a bijection and $[F_1 \longrightarrow F_1] = [F_1 \longrightarrow F_1]$ for any $x, x' \in F_1$, one can see that ϕ^* is a bijection. Lemma. Suppose S and S' are two splices, and SNS'. Then S meducible => S' irreducible.

Lecture 21: Map on the maximal boundary

Thursday, March 16, 2017 11:06 AM

dim. Claim of (E) is an irreducible splice class. <u>Pf of claim</u>. Let S be a splice in $\varphi^*(\xi)$. If it is not irreducible, S'N S, U...US, and S NS; for some splices Sz. Since of is a bijection, ∃ splices Sz' st. \$(Si)~Si'. So $\phi({}^{\triangleleft}F) \sim S_1' \cup \dots \cup S_n' \sim \phi(S_1) \cup \dots \cup \phi(S_n)$ $\Rightarrow \varphi^{-1}(\varphi({}^{\triangleleft}\mathsf{F})) \sim \varphi^{-1}(\varphi(S_1) \cup \cdots \cup \varphi(S_n))$ $= \phi^{1}(\phi(S_{l})) \cup \cdots \cup \phi^{1}(\phi(S_{n}))$ $\Rightarrow \forall \mp \sim S_1 \cup \cdots \cup S_n$ $\Rightarrow \exists i' : \forall F \sim S_i' \Rightarrow \varphi(\forall F) \sim \varphi(S_i')$ \implies S'~ S₂: which is a contradiction. . Hence \$\$ sends Weyl chambers and chamber walls, to Weyl chambers and chamber walls. . Since Weyl chambers of the max. dim., we get that $\phi^*(\xi)$ consists of weyl chambers. So we get $\varphi:(X_{\pm}) \longrightarrow (X_{2})_{o}$. Since \$\$ is I-equi. and bijection, we get that to is T-equi. and bijection.

Lecture 21: Map on the set of parabolics Thursday, March 16, 2017 11:32 AM In fact the above argument gives us a bit more: For any Weyl chamber or chamber wall $\triangleleft S$, let $\lceil \triangleleft S \rceil$ be its class in S(X). Then all of elements of IASJ are again either a Weyl chamber or a chamber wall. Let S'(X) be the set of such elements. Then ϕ^* induces a Γ -equiv. bijection $\phi_{in}^* : S'(X_1) \longrightarrow S'(X_2)$. On the other hand, to any S, we attached a parabolic $P(\P S)$. And one can see (similar to the discussion that we had for maximal boundary) $^{\triangleleft}S \sim ^{\triangleleft}S' \iff ^{\triangleleft}S' = q^{\triangleleft}S$ for some $q \in P(^{\triangleleft}S)$ And from here one can deduce $P(\P S) = P(\P S')$ and $[S] \mapsto P(S)$ is a bijection between $S^{in}(X) \longrightarrow T(G) :=$ the set of parabolics. Corollary. $\exists \tilde{\phi}: T(G_1) \longrightarrow T(G_2)$ a bijection st. $\forall \forall eT$, $\tilde{\phi}(\forall P \forall^{-1}) = \theta(\forall) \tilde{\phi}(\forall) \theta(\forall)^{-1}$.

Lecture 21: Isometry of Tits spherical buildings
To get an isomorphism between
$$G_{i}$$
's, using Tits's result, it is
enough to show that the mentioned bijection $\mathfrak{P}: T(G_{1}) \rightarrow T(G_{2})$
preserves the ordering.
 $\mathbb{P}({}^{d}S_{1}) \subseteq \mathbb{P}({}^{d}S_{2}) \Longrightarrow {}^{d}S_{2} \subseteq \mathbb{N}_{O(1)}({}^{d}S_{1})$
 $\Rightarrow \Phi({}^{d}S_{2}) \subseteq \mathbb{N}_{O(1)}(\Phi({}^{d}S_{1}))$
 $\Rightarrow \Phi({}^{d}S_{2}) \subseteq \mathbb{N}_{O(1)}(\Phi({}^{d}S_{1}))$
 $\Rightarrow \Phi({}^{d}S_{2}) \subseteq \mathbb{N}_{O(1)}(\Phi({}^{d}S_{1}))$
 $\Rightarrow \Psi({}^{d}S_{1}) \subseteq \mathbb{P}({}^{d}S_{2}))$
 $\Rightarrow \Psi({}^{d}({}^{d}S_{1})) \subseteq \mathbb{P}({}^{d}S_{2}))$
 $\Rightarrow \Psi({}^{d}({}^{d}S_{1})) \subseteq \mathbb{P}({}^{d}S_{2}))$
 $\Rightarrow \Psi({}^{d}({}^{d}S_{1})) \subseteq \mathbb{P}({}^{d}S_{2}))$.
So by the rigidity of Tits spherical building are get
 $\exists \tilde{\Theta}: G_{1} \rightarrow G_{2} \text{ st. } \mathfrak{P}(\mathbb{P}) = \mathfrak{O}(\mathbb{P})$.
So $\mathfrak{O}(\mathbb{Y}\mathbb{P}\mathbb{Y}^{-1}) = \mathfrak{O}(\mathbb{Y}) \ \mathfrak{O}(\mathbb{P}) = \mathfrak{O}(\mathbb{Y})^{-1}$
 $\Rightarrow = \mathfrak{O}(\mathbb{Y}) \ \mathfrak{O}(\mathbb{Y})^{-1} \in \bigcap \mathbb{N}(\Phi) = \bigcap \mathbb{P} = 1$
 $\mathbb{P}(T(G_{2}))$
 $(as \mathbb{Z}(G_{2})=1 \text{ and it has no compact}$
 $factors .)$
 $\Rightarrow = \mathfrak{O}(\mathbb{Y}) = \mathfrak{O}(\mathbb{Y}) \Rightarrow \ \mathfrak{O}|_{\mathbb{P}} = \mathfrak{O} .$