Lecture 19: Equality of \mathbb{R} -ranks

Thursday, March 9, 2017 11:33 PM

Proposition. In the setting of Mostow's Strong Rigidity Theorem,

① \mathbb{R} -rank of $G_1 = \mathbb{R}$ -rank of G_2 .

2) For Fe Fi, let $\Delta_{F_1} := \Gamma \cap G_{F_1}$, where

 $G_{\overline{F}_1} := \{g \in G \mid g \in \overline{f}_1 = \overline{f}_1\}. \text{ Then } \exists ! \ \overline{f}_2 \in \overline{f}_{2,T} \text{ s.t.}$

 $\Theta(\Delta_{F_1}) \subseteq G_{F_2}$ and $\Theta(\Delta_{F})$ is a cocompact lattice

To prove the above result, we start with understanding R-rank

of G in terms of group theoretic properties of Γ .

Lemma. \mathbb{R} -rank of $G=\max\{\operatorname{rank}(\Delta)\mid\Delta\subseteq T \text{ is a }\}$. free abelian group $\frac{\mathbb{P}^{2}}{2}$. Let $\Delta\subseteq T$ be a free abelian group.

Since I is cocompact, it consists of semisimple elements. Since

 Δ is abelian, Δ is diagonalizable over $\mathbb C$. Hence the

Zaniski-closure T of A is diagonalizable over C, and

 $\Delta \subseteq T := T(\mathbb{R})$. Hence T can be written as a product

of a polar subgroup A and a compact abelian group C

Lecture 19: Equality of \mathbb{R} -ranks

Friday, March 10, 2017 1:

Hence Δ is a discrete subgp of $A \times C$. Since C is compact,

the projection of Δ to the A-part is still discrete.

Moreover, since Δ is discrete and torsion-free, $\Delta \cap C=1$.

So pr: $A \times C \longrightarrow A$ induces an isomorphism $A \longrightarrow P_A^r(A)$.

Since $A \simeq \mathbb{R}^{\circ}$ and $r_{\circ} \leq \mathbb{R}$ -rank of G, we get that

 $\operatorname{rank}(\Delta) = \operatorname{rank}(\operatorname{pr}_{A}(\Delta)) \leq r_0 \leq \mathbb{R} - \operatorname{rank} \circ f \in \mathbb{R}$

Let $F \in \mathcal{F}_{I}$. So $I \cap G_{F}$ is a cocompact lattice in G_{F} .

And $G_F = MA$ where M is the maximal compact subgp of

 $C_{\zeta}(A)$, $F=Ax_{o}$, A is a maximal polar subgp, and $Mx_{o}=x_{o}$.

Since $A \cap M = 1$ and $M \subseteq C_G(A)$, we get $G_{+} \simeq A \times M$.

So $\Delta := \Gamma_{\Omega}G_{+} \subset A \times M$ as a cocompact lattice. Since

M is compact, $pr(\Delta)$ is a lattice in A; Since T is

discrete and torsion-free, $Mn\Gamma = 1.50 \Delta Pr_A(\Delta) \subseteq A$

a lattice in A. Hence \triangle is a free abelian gp and $\operatorname{rank}(\triangle) = \mathbb{R} - \operatorname{rank}$ of G.

Lecture 19: Equality of \mathbb{R} -ranks

Friday, March 10, 2017

Lemma implies the equality of R-ranks which is part I of Proposi.

To get the second part, it is enough to show the following:

Lemma. Suppose $\Delta \subseteq I$ is a free abelian group whose rank

is the R-rank of G. Then there is a unique flat F s.t.

 $\Delta\subseteq G_{\mp}$. Moreover Δ is a cocompact lattice in G_{\mp} .

 $\frac{Pf}{A}$. As in the proof of previous lemma, $\Delta \subseteq T = \dot{A} \cdot C$ where

A is a polar subgroup and C is a compact abelian group.

Since Δ is discrete and torsion-free and C is compact,

 $\triangle \simeq \operatorname{pr}(\Delta) \subset A$ is a discrete subgp. So $\operatorname{rank}(\Delta) \leq \dim A$.

Since $\dim(A) \leq \mathbb{R}$ -rank of $G = \operatorname{ran}(\Delta)$, we get that A is a max.

polar subgp. And $pr_A(\Delta)$ is a cocompact lattice in A.

Therefore Δ is a cocompact lattice in A.C.

 $\exists g \in G \text{ s.t. } g \land g^{-1} \subseteq P := P(n) \land G \text{ and } g \land g^{-1} \subseteq K := O(n) \land G.$

 $F = AC g^{1}x_{K} = g^{-1} g Ag^{-1} \cdot g Cg^{-1} \cdot x_{K} = g^{-1}(g Ag^{-1}) x_{K}$ is a flat.

And $\Delta \subseteq AC \subseteq G_{\mp}$. Moreover G_{\mp}/AC is compact $\Rightarrow \Delta$ is cocomp. in G_{\mp} . Exercise show uniqueness.

Lecture 19: Mapping arGamma-compact flats

Friday, March 10, 2017

2:18 AM

Pf of proposition. (1) R-rank of $G_1 = \max \{ rank(\Delta) \mid \Delta \subseteq \Gamma \}$ abelian = R-rank of G_2 .

 $\Rightarrow \operatorname{rank}(\Theta(\Delta_{\perp})) = \mathbb{R} - \operatorname{rank} \text{ of } G_{\perp} = \mathbb{R} - \operatorname{rank} \text{ of } G_{\geq}$ (by the $\Rightarrow \exists : F_{2} \in \mathcal{F}_{\perp}, \quad \Theta(\Delta_{\perp}) \subseteq G_{\neq}.$ 2nd lemma)

Lemma. $\forall F_1 \in \mathcal{F}_{1,T}$, let $F_2 \in \mathcal{F}_{2,T}$ be given by Proposition.

Then $hd(\varphi(F_1), F_2) \ll 1$.

 \underline{PF} . Step 1. Let $p_i: X_i \longrightarrow F_i$ be the orthogonal projection.

Then $\operatorname{pr}_{2}(\Phi(F_{1})) = F_{2}$.

Step 2. $pr_1(\phi^1(N_C(f_2))) = F_1$ where C' depends on the QI parameters of ϕ .

Step 3. Finishing the proof.

Step 1 Let $\Delta = \Gamma \cap G_{F_1}$. Then, as we showed earlier, Δ is

a free abelian group, and IFI is compact. And the way F2

Lecture 19: Mapping arGamma-compacf flats

Friday, March 10, 2017

2017 10:05 AM

 F_2 is defined, we have $\theta(\Delta) \subseteq G_{F_2}$ and F_2 is compact.

Let $\Psi: F_1 \longrightarrow F_2$ be $\Psi(x) = pr_2(\varphi(x))$. Then,

for any $Y \in \Delta$, $\Psi(Y x) = pr_2(\varphi(Y x))$

 $= pr_2 (Y + (x))$ $= pr_2 (Y + (x))$ $= pr_2 (Y + (x))$

. Since Fi's are contractible, we get that

14. FI To a homotopy equivalence.

So at induces isomorphism of the homotopy groups Hr (Fi) and

Hr (1/2). Since these are r-dim. tori (ro= R-rank of Gi),

the top dimensional cycle should be mapped to the top dimensional

cycle -> 245 is onto -> 245 is onto.

Step 2 $\phi: X_1 \longrightarrow X_2$ is $(\lambda, C) - QI$, and $\lambda - Lip schitz$. So

 $\lambda d(x,y) \ge d(\phi(x),\phi(y)) \ge \lambda^{-1} d(x,y) - C$. Hence, if

 $d(x,y) \geq 2 \frac{\lambda C}{\lambda}$, then

 $d(\phi(x),\phi(y)) \geq \lambda^{-1} d(x,y) - C \geq \lambda^{-1} d(x,y) - \frac{\lambda^{-1}}{2} d(x,y)$ $\geq (2\lambda)^{-1} d(x,y)$.

Lecture 19: Mapping Γ -compact flats

Friday, March 10, 2017

 $\underline{\text{Claim}} \cdot \text{pr}_1\left(\varphi^1\left(N_{\mathbf{b}}(\overline{T_2})\right)\right) = \overline{T_1}.$

 $\underline{\mathcal{H}}$. Let $\Delta\subseteq G_{\overline{f_1}}$ be a free abelian group of rank r_s . (So

 Δ and $\Phi(\Delta)$ are tori.)

The idea is to construct $\xi: \overline{F_2} \longrightarrow X^{\pm}$ in a way

that it induces an isomorphism between $H_r(x_0)$ and $H_r(x_1)$.

On the other hand, the orthogonal projection or induces an isomorphism

between $H(X_1)$ and $H(\Delta^{F_1})$ (X_1 and F_1 are contractible

and pr is Δ -equivariant. Hence prox induces a bijection

between $H_{r_0}(F_2)$ and $H_{r_0}(\Delta^{F_1})$. Therefore

$$\operatorname{pr}_{\pm} \circ \xi \left(\begin{array}{c} F_2 \\ \theta \triangle \end{array} \right) = \underbrace{F_1}$$

Now, it would be enough to make sure $\xi(\overline{t_2})$ is in $N_b(\overline{t_2})$.

. To construct ξ , we start with a triangularization Σ of F_2 ,

st. \forall simplicial $\sigma \in \Sigma$, diam $(\sigma) \leq b/k$. We will define ξ on

the vertices \sum_{o} of \sum_{o} and then we extend ξ on larger simplicials

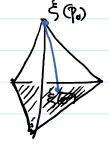
as follows: Yor∈ ∑d, let Po be a vertex of or and or be the face of

Lecture 19: Mapping arGamma -compact flats

Friday, March 10, 2017 7:51 PI

or which is in front of p. Then, for any pero, we send

[P., P] to [\$(P), \$(P)].



For any $p \in \Sigma_0$, let $\xi(p) \in X^1$ be st. $\varphi(\xi(p)) = p$. (why is there such $\xi(p)$? This is non-trivial.)

Claim 1 $\forall P_1, P_2 \in \mathbf{O} \cap \sum_{o}$, $d(\xi_{(P_1)}, \xi_{(P_2)}) \leq b$.

 $\frac{\mathcal{P}}{\mathcal{P}}$ if not, $d(+(\xi(P_1)), +(\xi(P_2))) > \frac{b}{k}$. $d(P_1, P_2)$

Claim 2 $\forall \sigma \in \Sigma$, $d(\varphi(\xi(\sigma)), \sigma) \leq kb$.

P. tpeo, &(p) is in the simplicial with vertices 3&(pi)3

where pi's are vertices of or. So d(&(pi), &(pi) < b. Hence

 $d(+(\xi(p_i)), +(\xi(p))) \leq bk$, which implies

 $d(p_i, \varphi(\xi(p))) \leq bk \Rightarrow d(\sigma, \varphi(\xi(\sigma))) \leq bk$.

 $\frac{C \ln 3}{8} \quad \forall \quad p \in \mathcal{F}_2, \quad d \left(\varphi(\xi(p)), p \right) \leq 2 kb.$

 $\frac{\mathbb{P}_{\cdot}}{\mathbb{P}_{\cdot}}$ peor for some $\sigma \in \Sigma \rightarrow \exists q \in \sigma \text{ s.t. } d(+_{\Delta}(\xi(p)),q) \leq kb$

And $d(p,q) \leq b/k$. So $d(\phi(\xi(p)), p) \leq 2kb$.

Lecture 19: Mapping arGamma-compact flats

Friday, March 10, 2017

8:27 PM

Going to a subgroup of finite-index of A we can make sure

that
$$\forall p' \in X_1$$
 has injectivity radius $\geq 4 \text{ kb}$.

So \$ can be deformed to the identity map along the

shortest pass connecting \$0 & Cp) to p. So

induces homomorphisms

$$H_{r_0}(\Delta^{F_2}) \longrightarrow H_{r_0}(\Delta^{X_1}) \longrightarrow H_{r_0}(\Delta^{X_2})$$

$$H_{r_0}(\Delta^{F_2})$$

$$H_{r_0}(\Delta^{F_2})$$

$$\Rightarrow H_{r_0}(\Delta^{F_2}) \xrightarrow{\xi} H_{r_0}(\Delta^{X_{\perp}})$$
 is an isomorphism.

On the other hand the orthogonal projection $P_{r_{\pm 2}}$ is Δ -equivari.

And so it induces an isomorphism $H_{r_0}(X_1) \xrightarrow{\sim} H_{r_0}(F_1)$.

Therefore $H_{r_0}(\Delta^{F_2})$ $\xrightarrow{Pr_{F_1}\circ \xi}$ $H_{r_0}(\Delta^{F_1})$ is an isomorphism.

Thus
$$\Pr_{F_1}(\xi(x^{F_2})) = x^{F_1} \Rightarrow \Pr_{F_1}(N_b(x^{-1}(F_2))) = F_1$$
.