Lecture $\ 17,\ 18: arGamma$ - equivariant QI between symmetric spaces

Tuesday, March 7, 2017 9:02 AN

 $\frac{PP}{P}$. Since T is torsion-free, it acts freely on X_i 's. So

 $M_i := X_i$ are compact manifolds. So they can be triang.

and are finite simplicial complexes =>

 $\exists +: X_1 \rightarrow X_2$ which is T-equivariant (continuous)

 $\overline{\Phi}: M_1 \longrightarrow M_2$ is simplicial.

Since any simplicial map satisfies the Lipschitz condition, we get

 $\exists \lambda > 1$, $d(\overline{\phi}(\overline{\alpha}), \overline{\phi}(\overline{y})) \leq \lambda d(\overline{\alpha}, \overline{y})$.

So for any curve c: [0,1] -> M1 with finite length we

have $l(\overline{\phi}(c)) = \sup_{c=t_0 < t_1 < \cdots < t_n < t_n = 1} \sum_{c=t_0 < t_1 < \cdots < t_n < t_n = 1} \sum_{c=t_0 < t_1 < \cdots < t_n < t_n = 1} \sum_{c=t_0 < t_1 < \cdots < t_n < t_n = 1} \sum_{c=t_0 < t_1 < \cdots < t_n < t_n = 1} \sum_{c=t_0 < t_1 < \cdots < t_n < t_n = 1} \sum_{c=t_0 < t_1 < \cdots < t_n < t_n = 1} \sum_{c=t_0 < t_1 < \cdots < t_n < t_n = 1} \sum_{c=t_0 < t_1 < \cdots < t_n < t$

 $\leq \lambda$ sup $\sum d(cct_i), cct_{ini})$ = $\lambda l(c)$.

Since the metric on X_2 is the covering metric $X_1 \xrightarrow{\mathcal{H}_2} M_2$,

are have: $\forall x, y \in X_{\frac{1}{2}}$, $d(x, y) = \inf_{C:[0,1] \to X_{\frac{1}{2}}} l(\pi_{i}(c))$.

 $\Rightarrow d(\phi(x), \phi(y)) = \inf_{\substack{\text{Cis,1} \to X_2\\\text{C(s)} = \phi(x), \text{C(1)} = \phi(y)}} l(\pi_2(c)) \leq \inf_{\substack{\text{Cis,1} \to X_1\\\text{C(s)} = \phi(x), \text{C(1)} = \phi(y)}} l(\pi_2(\phi(c)))$

Lecture 18: arGamma-equivariant QI

Tuesday, March 7, 2017

$$=\inf_{\substack{c: \overline{b}, 1\overline{J} \to X_1\\ con=x, coll=y}} l(\overline{\phi}(\overline{\pi}_1(c)))$$

$$\leq \frac{1}{1} \lim_{x \to x} \frac{1}{1} \left(\pi_{1}(x) \right) = \frac{1}{1} \operatorname{d}(x,y) .$$

•
$$d(x,y) \leq d(y,x,y) + d(x,y,x)$$
 where $d(x,y,x) \leq diam M_1$
 $d(\phi(x),\phi(x,y)) \leq \lambda d(x,x,y) \leq \lambda diam M_1$.

•
$$d(\phi(x), \phi(y)) \ge d(\phi(y), \gamma, \phi(y)) - \lambda diam M_1$$

Lecture 18: Uniform injectivity radius

Thursday, March 9, 2017

· A closed curve in M up to homotopy determines a conjugacy

class C(18,10f I. And the infimum of the length of these curves is

 $d_{\gamma} := \inf_{x \in X} d(x, \gamma, x)$, the displacement of I.

Since I is a cocompact lattice, all of its elements are

semisimple. So dy >0, as I has no tersion-element.

Let S:= { c ⊆ M₁ | ① c is a closed curve,
② l(c) ≤ lo,
③ c is homotopically non-trivial

Since My is compact, S is compact with respect to the

Chabanty topology on closed subsets of M1: (Hausdorff distance

topology.). So there is a smallest length curve among elements

of S. Hence inf $d_{\gamma} = d_{\gamma_0} = r_0 > 0$ for some $\gamma \in \Gamma$.

. So any point of Mi has an injectivity radius of 2 %/2, is

YxeXi, Ti B(x, 76/2) is injective.

Lecture 18: Space of flats

Thursday, March 9, 2017

Let Fi be the space of maximal flats of X;; with the

topology of uniform convergence on compact sets. Our next goal

is to show that ϕ induces a homeomorphism $\overline{\phi}: \overline{f_1} \rightarrow \overline{f_2}$.

To define the \$\Prove:

Proposition (1) Y F & F, 3! F & F2 s.t.

 $hd(\varphi(F_1), F_2) \ll 1$

2) Define \$\Phi(F_1) ∈ F_2 s.t.

M(中(F))でより)く」.

Then \$ is a homeomorphism and it is

clearly I-equivariant.

. We start by a subset of \mathcal{F}_1 :

 $\mathcal{F}_{1,T} := \{ \mathcal{F} \in \mathcal{F}_1 \mid F \text{ is } T\text{-compact} \}$ i.e. TF is compact

Lemma. F is dense in F.

Pf. $F \in \mathcal{F} \Rightarrow F = A x_0$ where A is a maximal polar subgp. Suppose $a \in A_t$, i.e. $\forall \alpha \in \Delta$, $\alpha(\alpha) > t$ where Δ is a set of simple roots of A.

Lecture 18: arGamma-compact flats are dense in the space of flats

Thursday, March 9, 2017 10:17 PM

We proved the following Proposition for $SL_n(\mathbb{R})$. The same argument works in general.

Proposition. Y nobld \mathcal{O}_{G} of I in G ,

Y nobld \mathcal{O}_{A} of I in A , T , T T , T T , a nobld of I in G , s.t.

Yae A_{T} , T T

Choose O_A small enough, e.g. $\{a' \in A \mid \alpha(a') \leq I \neq f \text{ for any } \alpha \in \Delta \}$, s.t. $A_{+}O_{A} \subseteq A_{+}'$ for some t'>1, e.g. for the above choice we get $A_{+}O_{A} \subseteq A_{I \neq}'$.

Let U_G be a noble of I which is given by the above proposition for an arbitrarily small noble O_G and O_A as above. By Selberg's argument, $\exists o < n \text{ s.t. } U_G \text{ a}^n U_G \cap I \neq \emptyset$.

Let $\gamma \in \Gamma \cap U_{G} \cap U_{G}$. Hence $\exists g \in \mathcal{O}_{G}$, $a' \in A_{\sqrt{1}}$, $m \in M \subseteq C \cap \mathcal{O}_{G}$. $\gamma = g a' m g^{-1}.$

Lecture 18: Γ - compact flats are dense in the space of flats

Thursday, March 9, 2017 10:31 PM

So
$$pol(8) = g \ a \ g^{-1}$$
 is regular, and

$$C_{G}(pol(8)) = C_{G}(g \ a \ g^{-1}) = g \ C_{G}(a) \ g^{-1}$$

$$= g \ C_{G}(A) \ g^{-1} \supseteq g \ A \ g^{-1}.$$

. By another Selberg's lemma (that we proved earlier) we have

that $C_{\Gamma}(\gamma)$ is a cocompact lattice in $C_{\Gamma}(\gamma)$.

. On the other hand, $C_G(A) = M \cdot A$ (see below), and so

$$C_{C}(\gamma) = g(C_{M}(m)A)g^{-1}$$

. Therefore $M'A^g$ is compact where $M:=C_M(m)$ and $I\cap M'A^g$

 $A^9 := g A g^{-1}$

Claim If A is a maximal polar subgroup, then

Pf of claim (1) After conjugating A, we can assume that A is

a maximal abelian subgroup of P:= Ponn G. So C(A) is

Lecture 18: Γ - compact flats are dense in the space of flats

Thursday, March 9, 2017 11:11 PM

Since $A \cap K = 1$, we get $C_{G}(A) \cap C_{K}(A) \times A$. And so $M := C_{K}(A)$ is the maximal compact subgroup of $C_{G}(A)$.

② After moving x and conjugating A, we can assume $x = x_k$. So $F = A \cdot x_k$ is a flat which passes through x_k Hence $A \subseteq P := GnP(n)$. So, by part 1, $M \subseteq K$, which implies $M \cdot x_k = x_k$ and $C_G(A) \cdot x_k = x_k$.

Since $F = A \cdot x_0$ is a maximal flat, $F = C_G(A) \cdot x_0$ and $M \cdot x_0 = x_0$. Hence $F_Y := C_G(Y) g x_0 = g C_M(m) A g^{-1} g x_0$ $= g A C_M(m) x_0 = g F \text{ is a flag; and}$ Since $C_G(Y)$ is compact, $T F_Y$ is compact. $C_G(Y)$

So $F_{Y} = g F \in F_{I}$ for some $g \in O_{G}$. Since O_{G} is an arbitrary unbld of I, we get the desired result.