Lecture 17: Quasi-isometric embedding

Tuesday, March 7, 2017

8:36 AM

Def. Let (X1,d1) and (X2,d2) be two metric spaces. Then

(1) $\phi: X_1 \rightarrow X_2$ is called a (λ, C) -quasi-isometric embedding if

 $\forall x, y \in X_1, \frac{1}{\lambda} d(x, y) - C \leq d_2(\phi(x), \phi(y)) \leq \lambda d(x, y) + C$

2) $A(\lambda, C)$ - quasi-isometric embedding $X_1 \xrightarrow{\Phi} X_2$ is called

 $(\underline{\lambda}, \underline{C})$ - quasi-isometry if $N_{\underline{C}}(\varphi(X_1)) = X_2$.

Ex. Suppose Ω_1 and Ω_2 are two finite symmetric generating sets of I. Then $\varphi\colon \operatorname{Cay}(\Gamma,\Omega_1) \to \operatorname{Cay}(\Gamma,\Omega_2)$, $\varphi(Y) = Y$ is a quasi-isometry.

 P_1 : $Q_1 \subseteq B_Q(r_0)$ and $Q_2 \subseteq B_Q(r_0)$ for some r, ≥ 1 . So

 $d_1(e, Y) \leq r_0 d_2(e, Y)$ and $d_2(e, Y) \leq r_0 d_1(e, Y)$

 $\Rightarrow \frac{1}{r_0} d_1(x,y) \leq d_2(\phi(x),\phi(y)) \leq r_0 d_1(x,y). \quad \Box$

Def. We say + ~4 for X + Y and X + Y

if I celt st. Y xex, d (p(x), 4(x)) <c.

Exercise N is an equivalence relation.

Lecture 17: Quasi-isometries

Thursday, March 2, 2017

8:54 AM

A few basic properties:

- +: X→Y is QI 3 → 4 is QI.; so we can talk about QI class [+] of functions.
- $X \xrightarrow{\Phi} Y$ and $Y \xrightarrow{2\psi} Z$ are QIs \Rightarrow 40 ϕ is QI.
- · X 中 Y and Y 中 Z are QIs, 中心中, 华心里 = 객, 中心里, 电 · So [4].[中]:=[45.中] is well-defined.
- $X \xrightarrow{\Phi} Y$ is QI $\Longrightarrow \exists \Psi : Y \xrightarrow{} X$ which is QI and $[\Psi I \not \Phi] = [id_X]$ and $[\Phi] [\Psi] = [id_X]$.
- QI(X):= $\{ +: X \rightarrow X \mid +: quasi-isom \}/ \sim is a group.$

The Svarc-Milnor lemma. X: geodesic space. I AX

properly and cocompactly by isometries. Then

- D I is finitely generated
- 2 for any $x_o \in X$, $Y \mapsto Y.x_o$ is a QI from a (locally finite)

 Cayley graph of T to X.

<u>Proof.</u> Let B(x,r) be the closed ball in X s.t. TB(x,r) = X.

Lecture 17: Svarc-Milnor lemma

Tuesday, March 7, 2017

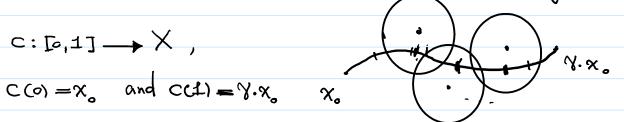
Since I AX is proper, $\Omega := \S \gamma \in \Gamma \setminus \gamma B(x_0, 3r_0) \cap B(x_0, 3r_0) \neq \emptyset \S$

is a finite (symmetric) set.

Claim
$$\Gamma = <\Omega>$$
.

Pf of claim. YY∈I, let L be a path connecting x to

V.x. with length $\leq d(x., V.x.) + 1$. So L is the image of



So \exists $o=t_0 < t_1 < \dots < t_{m-1} < t_m = 1$ s.t. length of the piece No=id, Ym= Y

of curve connecting $C(t_i)$ to $C(t_{i+1})$ is r_0 for $i \leq m-2$, and

ength of the piece of the curve connecting (Ct_{m-1}) to (Ct_m) is $\leq r_0$. In particular, d(c(ti), c(ti+i)) < r., for any i.

$$\Rightarrow \exists \forall_i \in \Gamma \text{ s.t. } cct_i) \in \forall_i \exists (x_o, r_o) = B(y_i \cdot x_o, r_o)$$

$$\Rightarrow d(Y_i \cdot x_o, Y_{i+1} \cdot x_o) \leq d(Y_i \cdot x_o, c(t_i)) + d(c(t_i), c(t_{i+1}))$$

$$\Rightarrow d(x_0, \gamma_1^{-1} \gamma_{1+1} x_0) \leq 370 \Rightarrow \cancel{q_{\pm}} \gamma_1^{-1} \gamma_{1+1} B(x_0, 370) \cap B(x_0, 370)$$

$$\Rightarrow \forall_{n}^{-1} \forall_{n+1} \in \Omega \Rightarrow \forall = \forall_{o} \cdot (\forall_{o}^{-1} \forall_{1}) \cdot (\forall_{1}^{-1} \forall_{2}) \cdot \dots \cdot (\forall_{m-1}^{-1} \forall_{m})$$

$$\in \Omega \cdot \Omega \cdot \cdots \cdot \Omega$$

Lecture 17: Svarc-Milnor lemma

Tuesday, March 7, 2017

10:20 AM

The above argument also gives us that

$$d_{\Omega}(e, Y) \leq m \leq \text{length of } L/_{T_0} + 1$$

$$\leq \frac{d(x_0, Y \cdot x_0) + 1}{T_0} + 1 = \frac{1}{T_0} d(x_0, Y \cdot x_0) + \frac{1}{T_0} + 1.$$

Now let $\lambda := \max \{d(x_0, \omega \cdot x_0) \mid \omega \in \Omega\} \leq 6r_0$. Then

$$d(x_{o}, \forall \cdot x_{o}) = d(x_{o}, \omega_{i_{1}} \dots \omega_{i_{1}} \cdot x_{o})$$

$$\leq d(\omega_{i_{1}} \dots \omega_{i_{1}} \cdot x_{o}, \omega_{i_{1}} \cdot \omega_{i_{2}} \dots \omega_{i_{1}} \cdot x_{o})$$

$$+ d(\omega_{i_{1}} \dots \omega_{i_{1}} \cdot x_{o}, \omega_{i_{1}} \dots \omega_{i_{1}} \cdot x_{o})$$

$$+ \dots + d(\omega_{i_{1}} \cdot x_{o}, x_{o})$$

$$= d(\omega_{i_{1}} \cdot x_{o}, x_{o}) + d(\omega_{i_{1}} \cdot x_{o}, x_{o}) + \dots + d(\omega_{i_{1}} \cdot x_{o}, x_{o})$$

$$\leq \lambda l = \lambda d(e, V).$$

So $Y \mapsto Y \cdot X$, is a quasi-isometric embedding. Since $N(I \cdot x_0) = I \cdot B_{2r_0}(x_0) = X$, we get that $Y \mapsto Y \cdot x_0$ is a QI.

Mostow's strong rigidity. Let G_1 and G_2 be two semisimple groups with trivial center and no compact simple factors.

Suppose $G_i \not\simeq \operatorname{SL}_2(\mathbb{R})$. Let $\Gamma_i \subseteq G_i$ be cocompact lattices.

Lecture 17: Statement of Mostow's strong rigidity

Tuesday, March 7, 2017

10:44 AM

Suppose $\theta: T_1 \xrightarrow{} T_2$. Then \exists an analytic isomorphism

$$\overline{\theta}: G_1 \xrightarrow{\sim} G_2 \text{ s.t. } \overline{\theta} \Big|_{\overline{\Gamma}_1} = \theta$$

A corollary of Svarc-Milnor lemma

 $\Gamma \subseteq G$ is a cocompact lattice in a semisimple group G

$$\Rightarrow \Gamma \xrightarrow{+} X := G/K$$

$$Y \mapsto Y \cdot x_o \text{ is a QI}$$

. So in the setting of Mostow's strong rigidity we get that

$$\Gamma \xrightarrow{\Phi_1} X_1$$
 and $\Gamma \xrightarrow{\Phi_2} X_2$ are QIs $Y \mapsto Y \cdot x_1$ $Y \mapsto \theta(Y) \cdot x_2$

So $\exists Y_1: X_1 \rightarrow \Gamma$ which is a quasi-inverse of ϕ_1

$$\Rightarrow \quad \varphi := \varphi_2 \circ \mathcal{V}_1 : \chi_1 \longrightarrow \chi_2 \quad \text{is a QI} \quad .$$
and
$$\varphi(\mathcal{V} \cdot \mathbf{x}_0) = \theta(\mathcal{V}) \cdot \mathbf{x}_0 \quad .$$

In fact we can choose & carefully to get a I-equivariant QI.

Proposition. In the setting of main theorem, if I 's are torsion-free,

$$(\Phi)$$
 $d(\Phi(x),\Phi(y)) \leq \lambda d(x,y)$.