Lecture 15: A bit of structure theory of semisimple groups

Thursday, February 23, 2017 10:02 AM

<u>Def</u>. $A \subseteq GL_n(\mathbb{R})$ is called a polar subgroup if (1) À is connected. (2) À is diagonalizable over R. . In the language of algebraic groups: A = S(R) where S is an R-split R-torus. Theorem. If A, and A, are two maximal polar subgp of G. then $\exists g \in G$ s.t. $g A_1 g^{-1} = A_2$. . Let A be a maximal polar subgroup.; -let g=Lie G:= {Y e gl (R) | exp(tY) e G \ \te R &. $\Rightarrow \forall g \in G, x \in \mathcal{A}, Ad(g)(x) := g \times g^{-1} \in \mathcal{B}.$ • Ad (A) \subseteq End (S) can be diag. / \mathbb{R} . So $\mathfrak{G} = \oplus \mathfrak{G}$ for some $\alpha \in Hom (A, \mathbb{R}^+)$ where $\mathcal{G}_{\chi} := \frac{2}{2} \times \mathcal{G} \left[\operatorname{Ad} (\alpha) (\chi) = \alpha(\alpha) \times \frac{2}{3} \right].$ • $X_{\alpha} \in \mathcal{G}_{\alpha} \Rightarrow Ad(\alpha) [X_{\alpha}, X_{\beta}] = [Ad(\alpha)(X_{\alpha}), Ad(\alpha)(X_{\beta})]$ = ~(a) B(a) [x2,xB]. We often denote Hom (A, R⁺) additively; so $[\chi_{\alpha},\chi_{\beta}] \in \mathcal{J}_{\alpha+\beta} \implies [\mathcal{J}_{\alpha},\mathcal{J}_{\beta}] \subseteq \mathcal{J}_{\alpha+\beta}.$

Lecture 15: A little bit of structure theory
Tuesday, February 28, 2017 8.38 M
Let A be a maximal abelian subgroup of
$$P := Poin \cap G$$
.
Then Ad(A) \subseteq Aut(G) is diagonalizable where
 $G = Lie(G) = \frac{2}{3} \propto e M_n(R) | exp(tx) \in G \frac{2}{3}$.
There any te R
and Ad(G) ($x = gxg^{\frac{1}{3}}$.
So $g = g_{\circ} \oplus \bigoplus \bigoplus (x) = exp(tx) = G \frac{2}{3}$.
So $g = g_{\circ} \oplus \bigoplus \bigoplus (x) = gxg^{\frac{1}{3}}$.
So $g = g_{\circ} \oplus \bigoplus \bigoplus (x) = gxg^{\frac{1}{3}}$.
So $g = g_{\circ} \oplus \bigoplus \bigoplus (x) = gxg^{\frac{1}{3}}$.
So $g = g_{\circ} \oplus \bigoplus \bigoplus (x) = gxg^{\frac{1}{3}}$.
Let $\Phi := \frac{2}{3} \varphi \in Hom(A, \mathbb{R}^{+}) | g_{\phi} \neq o ; \varphi \neq o \frac{2}{3}$.
Let $\Phi := \frac{2}{3} \varphi \in Hom(A, \mathbb{R}^{+}) | g_{\phi} \neq o ; \varphi \neq o \frac{2}{3}$.
Let $\Phi := \frac{2}{3} \varphi \in Hom(A, \mathbb{R}^{+}) | g_{\phi} \neq o ; \varphi \neq o \frac{2}{3}$.
Let $\Phi := \frac{2}{3} \varphi \in Hom(A, \mathbb{R}^{+}) | g_{\phi} \neq o ; \varphi \neq o \frac{2}{3}$.
 $\mathbb{P}_{\alpha}, g_{\alpha} \neq g \in \Phi$, then $[g_{\alpha}, g_{\beta}] \neq o : Ad(a)(g_{\alpha}) = a(a) x_{\alpha} + (ax_{\alpha}a^{-1})^{\frac{1}{3}} = a(a) (a) (a) Ad(a^{-1}a_{\alpha}) (x_{\alpha}) = (a) (a) (Ad(a x_{\alpha}a_{\alpha}) + (a) (a) (Ad(a x_{\alpha}a_{\alpha}) + (a) (a) (Ad(a x_{\alpha}) + (a) (a) (Ad($

Lecture 15: A little bit of structure theory Tuesday, February 28, 2017 8:55 AM • Let $\pi := \text{Lie}(A)$. Then (Restriction of the Killing form) $Tr (ad(x_1) ad(x_2)) = \sum ding h (\varphi(e^{x_1})) \cdot h(\varphi(e^{x_2}))$ $Pe = \varphi$ is a positive-definite form on DC which is W-invariant. . We can view $Hom(AR^{\dagger})$ as the dual space of DL and identify it with DI using the above non-degenerate form. . For any φ , $\exists \varphi \in W$ s.t. φ is the orthogonal reflection w.r.t. Q (Using the above scalar product.); that means $\nabla_{\varphi}(v) = v - \frac{v \cdot \varphi}{\varphi \cdot \varphi} \varphi$. Using this one can get the usual classification of possible Φ 's and $\langle \varphi_1, \varphi_2 \rangle := \frac{\varphi_1 \cdot \varphi_2}{\varphi_2 \cdot \varphi_2}$ In particular, are get • There is a set of simple roots; that means $\exists \Delta \subseteq \overline{\Phi}, \forall \varphi \in \overline{\Phi}, \exists i \in \mathbb{Z}^{\geq 0}$ s.t. either $\varphi = \sum_{\alpha \in \Delta} n_{\alpha} \alpha$ or $\varphi = -\sum_{\alpha \in \Delta} n_{\alpha} \alpha$. . Wacts simply transitively on the collection of sets of Simple roots. • $A \longrightarrow (\mathbb{R}^+)^{|\Delta|}$, $a \longmapsto (\alpha(\alpha))_{\alpha \in \Delta}$ is an isomorphism.

Lecture 15: A little bit of structure theory
Thursday, February 23, 2017 1039 AM
•
$$\forall d \in C_{G}(A)$$
, $\pi_{u} \in \mathbb{S}_{u}$, $a \in A$, $Ad(a)(Ad(d)(\pi_{u}))$
= $Ad(ad)(Ad(ax_{u}))$
= $Ad(d)(Ad(ax_{u}))$
= $Ad(a)(Ad(ax_{u}))$
=

Lecture 15: A little bit of structure theory Thursday, February 23, 2017 11:10 AM . For any $\varphi \in \Phi$, we have already seen that $g_{\alpha}^{t} = g_{-\alpha}$ Since for any xeg, x-xt E Lie(K), we get that $Lie(K) + Lie(P(\P \widehat{H})) = \Im. So K.P(\P H) is an open$ subset of G => P(AA) K/K is both open and closed subset of X. So we get $P(\forall A) K = G \cdot \ln particular$, G/p(1A) is compact. • ${}^{\triangleleft}B_1$ and ${}^{\triangleleft}B_2$ are two faces of possibly two different Weyl chambers; $\mathbb{P}(^{\triangleleft}B_1) \subseteq \mathbb{P}(^{\triangleleft}B_2) \iff {}^{\triangleleft}B_2$ is a face of ${}^{\triangleleft}B_1$. In particular, $P(\neg B)$ is a minimal parabolic $\iff \neg B$ is a Weyl chamber. . If F is a maximal flat in X, then $F = A \cdot x$ for some maximal polar subgp A and $x \in X$. Then $\Delta F = \Delta A \cdot x$ is called a Weyl chamber in X.

Lecture 15: Metric definition of maximal boundary Thursday, February 23, 2017 11:40 AM Def. Hausdorff distance of two closed subsets of a metric space is hd (A,B) := inf $\xi \in \mathbb{R}^+ \cup \xi_{\infty}$ $A \subseteq N_{\mu}(B) \xi$. $B \subseteq N_{r}(A)$ Def. The maximal boundary X, of X is defined as 2 4 F | 4 F is a positive Weyl chamber 3 / ~ where $\forall F_1 \sim {}^{\triangleleft}F_2 \iff hd({}^{\triangleleft}F_1, {}^{\triangleleft}F_2) < \infty$ Ex. Ends of a tree: all the rays / ~ $r_1 \sim r_2$ if $|r_1 \propto r_2| < \infty$. $hd(r_1,r_2) < \infty$. Hyperbolic disc. they meet at the same point at the boundary. Proposition. There is a G- equivariant bijection between X and G/P where P is a minimal parabolic. Pf. We have $G = P({}^{\triangleleft}\mathbf{H}) K$ and $P({}^{\triangleleft}\mathbf{A}) = C({}^{\triangleleft}\mathbf{A}) U({}^{\triangleleft}\mathbf{A})$ YueU((H), gaua | a∈ Hog is bounded.