Lecture 14: P(n) is CAT(0) Wednesday, February 22, 2017 9:03 AM Proposition Let ABC be a triangle in P(n) and A'B'C' be its Euclidean twin. Let $M \in [BC]$ and $M' \in IB', C'J$ s.t. d(B, M) = d(B', M'). Then $d(A,M) \leq d(A',M')$ Lemma (In Euclidean geometry!) In the following picture segments with the same color have equal lengths. Moreover D' is inside the triangle A'B'C' and C B'D' B, D, and C C'are collinear. Then $AD \ge A'D'$. Pf. (It is a cute junior high geometry problem. Try to show it on your own [] Let's extend BD' to reach to C > c'' s.t. D'C'' = D'C'. In triangles ď A'D'C' and A'D'C", we have $\rightarrow A'C' \leq A'C'.$ DC = DC''A'D' = A'D'In triangles A'B'C' and ABC, we have $AB = A'B' = \beta \ge \beta'$ n triangles APP 1 $\angle A'D'C'' \leq \angle A'D'C'$ In triangles ABD and A'BD, we have AB = A'B', $AD \ge A'D'$. BD = BD'BZB'

Lecture 14: P(n) is a CAT(0) space Wednesday, February 22, 2017 11:53 AM Proof of proposition. Let A"B"M" and B"M"C" be the Euclidean twins of ABM and BMC, respectively. ćB M" B So $\angle BMA \leq \angle B^{"}M^{"}A^{"}$ and $\angle CMA \leq \angle C^{"}M^{"}A^{"}$ M" is a point inside A"B" c". Hence by the previous Thus lemma, $A'M' \ge A''M' = d(A, M)$. Corollary. Let A'B'C' be the Euclidean twin of ABC. Let Me [A,B], M'E [A',B], NE [A,C], N'E [A',C] st. A'M' = d(A,M), K'N' = d(A,N). Then $d(M,N) \leq M'N'$. <u>Pf</u>. Let A"C"M" be the Euclidean twin of ABM. So by the previous ุ N ้ / M M proposition, d(M,N) < N/ N' MN. And B $d(M,C) = MC \leq MC'$. In triangles A'M'C' and A"M"C", we have $A'M' = A''M'' \stackrel{?}{\Rightarrow} \angle A' \ge \angle A''$. In A'M'N' and $A'M'N', AM = A'M' \stackrel{?}{\Rightarrow} A'C' = A''C''$ ∧' c' = ∧"c" LA'> L* J M'c' 2 M"c" $M'N' \ge M'N'' \ge d(M,N).$

StrongRigidity Page 3

Lecture 14: Energy and center of mass
Thursday, February 23, 2017 8-26 AM
Def. Let F be a compact subset of Pon. We define the
energy of a point x, cont. F as follows:

$$E_{\mp}(x) := \int_{F} d(x_{0}, x)^{2} d\mu(x)$$
where μ is the volume form induced by the Reimannian metric.
Lemma. For a compact set $F \subseteq X$, there is a unique point $x \in X$
coshich minimizes $E_{\mp}(x)$ if $vol(F) \neq o$.
Pf. By continue of $d(x_{0}, x)$, coe can show the existance of a point
coshich gives us the minimum.
Now suppose x_{1} and x_{2} give us the minimum. Let M be
the midpoint of $I(x_{1}, x_{2})$. Then for any $x \in P(x)$ are have
 $d(x_{1}, M)^{2} \leq I(x'M')^{2} = \frac{1}{4} (2[x'x_{1}]^{2} + 2[x'x_{2}]^{2} - tx'x_{2}^{2})$
where $x'x_{1}'x_{2}$ is the Euclidean
 x_{1} M x_{2}
twin of $xx_{1}x_{2}$, and M' is the midpoint of $x'_{1}x'_{2}$.
 $\Rightarrow d(x, M)^{2} \leq \frac{1}{4} (2 d(x_{1}, x_{4})^{2} + 2 d(x_{1}, x_{2})^{2} - d(x_{1}, x_{2})^{2})$
 $\Rightarrow E_{\mp}(M) \leq \frac{1}{4} (2 E_{\mp}(x_{4}) + 2 E_{\mp}(x_{2})) - vol(F) d(x_{1}, x_{2})^{2}$

Lecture 14: Maximal compact subgroups are conjugate
Thursday, February 23, 2017 842 AM
Def.
$$x_{\mp}$$
 in the previous lemma is called the center of mass of F.
Proposition . (1) Any compact subgroup C of G fixes a point in X.
(2) Any maximal compact subgroup of G is a conjugate
of K.
PF. (1) Let $F := \overline{N_{\pm}(C \cdot x_{*})}$ be the 1-mbhd of the C-orbit
of a point $x_{*} \in X$.
 $\Rightarrow \qquad x \in F$, $\exists c' \in C$, $d(x_{*}, c' \cdot x_{*}) \leq 1$
 $\Rightarrow \qquad \forall c \in C$, $d(c \cdot x, cc' \cdot x_{*}) \leq 1$
 $\Rightarrow \qquad \forall c \in C$, $d(c \cdot x, cc' \cdot x_{*}) \leq 1$
 $\Rightarrow \qquad c \cdot x \in N_{\pm}(C \cdot x_{*}) = F \cdot S_{*} F$ is C-invariant.
 $\forall c \in C$, $E_{\mp}(c \cdot x_{\mp}) = \int d(x_{*}, c \cdot x_{\mp})^{2} d\mu(x)$
 $= \int_{F} d(cc^{4} \cdot x, x_{\mp})^{2} d\mu(x)$
 $= \int_{F} d(cx_{*}, x_{\mp})^{2} d\mu(x) = E_{\mp}(x_{\mp})$
 \mp
 $\Rightarrow c \cdot x_{\mp} = x_{\mp}$ because of uniqueness of x_{\mp} .
(2) Let C be a maximal compact subgroup. Then $\exists x_{*} \in X$ st:
 $C = Stab(x_{*}) = g$ Stab(I) $g_{*}^{-1} - g_{*}Kg^{*}$ cuhere $g_{*} I = x_{*}$
By maximality of C , ave get $C = g_{*}Kg^{*}$.

Lecture 14: Lines in a nhbd of a geodesic subspace
Tuesday, February 21, 2017 9:21 MM
Lemma. Suppose a geodesic line L is in N_d(F) where deR^t
and F is a geodesic Subspace. Then
① VpeL, d(p, F) = d(L, F).
②
$$p_1 \pi ep_1 \pi ep_2 \pi ep_2$$
 is a rectangle, r.e. all the angles are πe_2
 $d(p_1, p_2) = d(\pi ep_1), \pi(p_2)$ and $d(p_1, \pi ep_1) = d(p_2, \pi ep_2)$.
Pf., Let $s \mapsto pes_2$ be on arc-length parametrization of L.
Then $s \mapsto d(pes_2, F)$ is a bounded convex function on R.
So it is constant (?).
. We have already said $[p_1, \pi ep_1] \perp F$.
. Since $d(p, F) = d(p_1, \pi ep_1)$ for any peL , we get
 $d(\pi ep_1) = d(\pi ep_1)$, L .
 $\Rightarrow \pi_L(\pi ep_1) = p_1$, which implies $[p_1, \pi ep_1] \perp L$.
Def. A geodesic subspace F of Pen is called flat if the
sum of angles of every triangle in F is π .
Lemma. ABC a enon-deg.) triangle sit. $exp_1 + N = \pi = \frac{1}{2}$ a flat F ewhich contains ABC.

Lecture 14: Flats passing through a triangle Tuesday, February 21, 2017 11:57 AM <u>Pf</u>: Suppose A = I. Then we have proved that BC = CB. Let $x = \log B$ and $y = \log C$. Now consider $F := \underbrace{\underbrace{}}_{x_1, x_2} \underbrace{}_{x_1, x_2} \underbrace{}_{x_1, x_2} \underbrace{}_{x_1, x_2} \underbrace{}_{x_1, x_2} \underbrace{}_{x_2, x$ Since x and y commute, the Riemannian metric on F is the same as the Euclidean metric on \mathbb{R}^2 via the log. map. And so F is flat. Corollary. Suppose sum of the angles of a quadrilateral is 27C. Then there is a flat which passes through its vertices. <u>Pf</u>. There are flats F and Fz D cuhich pass through ABC and C ACD, respectively. Similarly there is a flat F3 which passes through BAD. Suppose A = I. So taking log does NOT change angle. Since CAD+CAB = DAB, all these points are in the same flat.

Lecture 14: Flats in X
Tuesday, Pebruary 21, 2017 12:15 PM
Lemma. Flat subspace of G/K which are passing through
$$a_K$$

are $A \cdot x_K$ where A is an analytic abelian subgroup of
 $P := P(n) \cap G$.
P: Consider lay F:= z laygl geFz. Then it is a commutative set.
And so the Euclidean metric on this set is the same as the
Rieman. metric on F. Hence lay F is a subspace of Son
consisting of commu. elements. So $A = \exp(\log F)$ is an
analytic abelian subgr of P. The inverse is similar. II
Lemma. Suppose A is a maximal abelian group which is a subset
of P. Then A is a maximal abelian group which is a subset
of P. Then A is a maximal abelian group of G.
P: $d \in C_{G}(A) \Rightarrow d a = ad \Rightarrow a^{+} d^{+} = d^{+} a^{+} \Rightarrow d^{+} \in C_{G}(A)$.
 $Vae A$
 $\rightarrow d = (d d^{+})^{4/2} (d d^{+})^{-4/2} d$.
 $Ph C_{G}(A) = A \subseteq P \Rightarrow Pn C_{G}(A) = A^{-1} C_{K}(A^{-1})$.
So pol(d) = a, which implies that A is a maximal polar subgroup **a**