Lecture 13: Flats and sum of the angles

Thursday, February 16, 2017

Since the equalities hold, we get

1 log p is the Euclidean segment connecting log B to log C.

@ p and p commute.

So If: [0,1] -> [0,1] increasing and differ. s.t.

yet-log pet) = fet) log C + (1-fet)) log B. And y commutes with y.

So f(t) (log C - log B) commutes with f(t) (log C - log B) + log B

⇒ f(t) (log C- log B) commutes with log B

⇒ B and C commute.

Proposition @ For A, B, C $\in X$, let α , β , γ be the angles in the triangle ABC. Then $\alpha+\beta+\gamma \leq \pi$.

And, if A=I, then $\alpha+\beta+\gamma=\pi$ \Longrightarrow B and C commute.

2 a> c sin a

 $3 \quad \forall 2 \frac{\pi}{2} \Rightarrow b \leq c \quad \text{Cos } \alpha.$

 $\frac{PP}{L}$ Let A_1, B_1, C_1 be the triangle in the Euclidean plane

with sides equal to a, b, c. Then

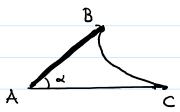
$$C_{ss} \propto_1 = \frac{b^2 + c^2 - a^2}{2bc} \leq C_{ss} \propto \implies \propto_1 \geq \propto$$

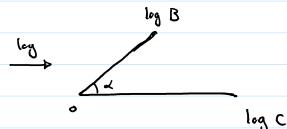
Similarly, BIZB and VIZY. So Q+B+8 < Q+B1+81=T.

If equality holds, then $\alpha = \alpha_1 \Rightarrow \alpha^2 = b^2 + c^2 = 2bc$ as $\alpha \sqrt{3}$.

Lecture 13: Thin triangles; diverging rays

Thursday, February 16, 2017 11:15 AM





$$\frac{a}{\sin \alpha} \ge \frac{\|\log B - \log C\|}{\sin \alpha} = 2R \ge \|\log C\| = c.$$

(3)
$$c^2 \cos^2 x = c^2 - c^2 \sin^2 x \ge a^2 + b^2 - 2ab \cos y - c^2 \sin^2 x$$

$$\geq a^2 + b^2 - a^2 = b^2$$
.

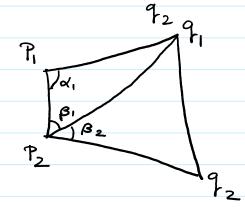
Lemma. In the following picture P, P2 929, is a quadrilateral

Suppose
$$\alpha_1, \alpha_2 \geq \frac{\pi}{2}$$
.

Then
$$d(q_1, q_2) \ge d(p_1, p_2)$$
.

$$\frac{Pf}{}$$
. Let $a = d(P_1, P_2)$,

$$c = d(q_1, q_2)$$
.



Since
$$\alpha_1 \geq \pi_2$$
, $b \subset \beta_1 \geq a$. (part 3)

Part Q implies
$$b \sin \beta_2 \leq c$$
. So

$$a \le b Gas \beta_1 = b Sin \left(\frac{\pi}{2} - \beta_1\right) \le b Sin \beta_2 \le C$$
.

Lecture 13: CAT(0) space

Tuesday, February 21, 2017

10:47 AM

Proposition. Let ABC be a triangle in Pan and ABC be its

twin in the Eulidean plane, r.e. edges of ABC and ABC

have the same length. Let MEIB, CJ and MEIB, CJ s.t.

d(C,M) = d(C',M'); and Ne [A,C], N'e [A',C'] s.t. d(C,N) = d(C',N').

Then $d(M,N) \leq d(M',N')$.

Pf. is postponed to the next lecture. (My original argument was flawed!)

Corollary. Suppose Pt [A,B] and Gt [A,C] sit.

 $d(A,P_{+})=t d(A,B)$ and $d(A,Q_{+})=t d(A,C)$ for $0 \le t \le 1$.

Then d (7,9,1) < + d (B,C).

Pf. Let A'B'C' be the Euclidean twin of ABC and Pt and qt be

Lecture 13: Convexity of certain function

Tuesday, February 21, 2017

corresponding points in ABC. Then by the previous Proposition we

have $d(P_{t}, Q_{t}) \leq d(P_{t}', Q_{t}') = t d(B', C') = t d(B, C)$.

from Euclidean geometry

Corollary. Let p and q be parametrization of geodesic segments

[P., P] and [q,,q,] s.t. d(P,,P) = t d(P,,P) and

d(q, q)=+ d(q, q). Then

 $d(P_{t}, q_{t}) \leq t d(P_{t}, q_{t}) + (1-t) d(P_{t}, q_{t})$.

Pf. d(q,,rt)≤ +d(q,,qo)

and d(f,91) < (1-t) d(81,91)

P. The state of th

 $\Rightarrow J(r_{t}, q_{t}) \leq J(r_{t}, r_{t}) + J(r_{t}, q_{t})$

< t d(p,q)+(1-t) d(p,q).

This will be instrumental in the proof of convexity of

the function of distance from a convex set.

Lecture 13: Nhbd of a convex set

Tuesday, February 14, 2017

Proposition Let C be a convex subset of P(n). Then

 $N_{d}(C) := 3 \times \mathbb{P}(m) \mid d(x,C) < d$ is convex.

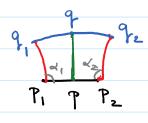
 $\frac{PF}{C}$. Since $N_d(C) = N_d(\overline{C})$, we can and will assume C is closed.

Let q, q & N, (C). Since C is closed, N, (q,) nC is compact

So I p. e C st. d (q.,p.) = d(q.,C). If we show the geodesic

segment [9,92] is a subset of Nd([p,,p]), we are done.

Let q = [q, q] be such that



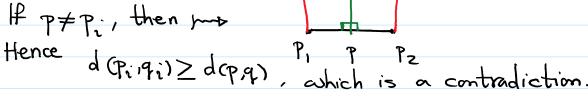
And PE [P, P2] be such that, d(q,p)=d(q,[P,P2]).

① If q=q, we are done as $d(q_1, p_1) \leq d$.

as otherwise we can

increase d (q, [P,P2]). 9,

Qa If p = p., then mo

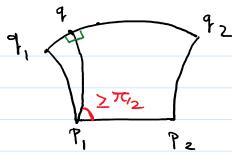


Lecture 13: Nbhd of a convex set

Thursday, February 16, 2017 8:27 AM

$$2 \boxed{0} \quad P = P_1 \quad \text{or} \quad P_2 \quad .$$

Since d(q,p)



Lemma For any convex closed set C and x & P(n), there is a unique point TC (x) in C s.t.

$$d(x, \pi_{C}(x)) = d(x, C)$$
.

$$Pf$$
. Suppose $P_1, P_2 \in C$ sit. $d(x, P_i) = d(x, C)$.

Since
$$d(x,p_i) = d(x, [p_i,p_2])$$
,

 $d_1, d_2 \ge T d_2$.

In a triangle sum of the angles

are
$$\leq \pi$$
. So $P_1 = P_2$.

 $\frac{\mathrm{Def}}{\mathrm{C}}$. We say $\mathrm{JC}(x)$ is the projection of x to C

Remark. Let F = Pan be a geodesic subspace. Then for any

X∈P(n) F, [x, T_(x)] L F. So, in this case T_(x) is

called the orthogonal projection of x onto F. And we have $d(x_1,x_2) \geq d(\pi_{+}(x_1),\pi_{+}(x_2))$.

Lecture 13: Convexity of the function of distance from a convex set

Tuesday, February 21, 2017 8:51 AN

PropositionLet Stops) be the arc-length parametrization of a geodesic L

in
$$P_{cm}$$
. Let C be a convex set. Then $S \mapsto f(S) := d(p(S), C)$

is a convex function, i.e.

$$f_{c}((1-t)a+tb) \leq (1-t)f_{ca}+tf_{cb}$$

 \underline{PP} . As $d(x,C)=d(x,\overline{C})$, are can and will assume C is closed.

$$f((1-t) + t + b) = d(p_t, C) \leq d(p_t, [\pi_c(p_t), \pi_c(p_t)])$$

$$:= f$$
 ((1-t)a+tb)

and
$$f_{C}(a) = d(p, \pi_{C}(p)) = d(p, [\pi_{C}(p), \pi_{C}(p)])$$

$$= \frac{1}{\left[x_{c}(p_{i}), x_{c}(p_{i}) \right]} (a),$$

and similarly
$$f(b) = f(a)$$
, $\pi(a)$ (b). Let $q = \pi(a)$, $q = \pi(a)$

So it is enough to prove the proposition for
$$C = [q_0, q_1]$$
.

Hence, for any te[0,1], it is enough to find a point q in [q,q]