Lecture 11: Geometry of symmetry spaces Thursday, February 9, 2017 10:31 AM <u>Def.</u> Let $G \subseteq GL_n(\mathbb{C})$ be a Zariski-closed subgroup defined over \mathbb{R} . Suppose $G := G(\mathbb{R}) \subseteq GL_n(\mathbb{R})$ is Zaviski-dense in GWe say G is semisimple if it does NOT have an infinite abelian normal subgroup. . Ex. $SL_n(\mathbb{R})$ or $\prod_{i=1}^{\mathbb{R}} SL_n(\mathbb{R})$ are semisimple Lie groups. Fact. Any semisimple group G is an almost product of almost simple Lie groups, i.e. $G = G_1 \cdot G_2 \cdot \cdots \cdot G_k$ where $|Z(G_i)| < \infty$ and $G_i/_{Z(G_i)}$ has no proper normal subgroup; $G_i \cap \prod_{j \neq i} G_j \subseteq Z(G_i)$ and so finite. Fact G° is of finite-index in G; and so G = [G, G]. So $G \hookrightarrow SL_{R}(\mathbb{R})$. Fact (Mostow) there is an embedding G SL (R) st. YgeG°, gt eG°. From this point we will assume: $G \subseteq SL_n(\mathbb{R})$, connected, semisimple without compact factor and $g \in G \Rightarrow g^t \in G$.

Lecture 11: Two models of X and the action of G
Thurday, February 9, 2017 1050 AM
Let
$$K := G \cap O(n)$$
 where $O(n) := \frac{2}{3}g \in GL_n(\mathbb{R}) \mid g \text{ is postive-definites}^{-12}$
 $et X := G \cap P(n)$ where $P(n) := \frac{2}{3}g \in GL_n(\mathbb{R}) \mid g \text{ is postive-definites}^{-12}$
 $g \in GL_n(\mathbb{R}) \Rightarrow (gg^{\dagger})^{d_2} \in P(n)$ and $(gg^{\dagger})^{d_2} g \in O(n)$.
 $a \in G \cap P(n) \xrightarrow{?}$ the 1-parameter group $s \mapsto a^s$ is in G.
Lemme $G = X \cdot K$ and $X \cap K = \frac{2}{3}I_s^s$.
 $Pf. g = (gg^{\dagger})^{d_2} \cdot ((gg^{\dagger})^{-1}g) \xrightarrow{?} G = X \cdot K$.
 $gg^{\dagger} \in G \cap P(n) \Rightarrow (gg^{\dagger})^{d_2} \in G$
 $g \in X \cap K \Rightarrow I = g g^{\dagger} = g_2^{-q} \xrightarrow{?} g = I$.
 $Gr. G/_K \longrightarrow X \cdot gK \mapsto gg^{\dagger}$ is a homeomorphism.
 $Pf. Coell-defined \cdot g_1K = g_2K \Rightarrow \exists k \in K, g_1 = g_2k$
 $i = 1 \cdot g_1 g_1^{\dagger} = g_2 g_2^{\dagger} \Rightarrow g_1^{-1} g_2 g_2^{\dagger} (g_1^{\dagger})^{-1} = I$
 $\Rightarrow g_1^{-1} g_2 \in K \Rightarrow g_1K = g_2K$.
 $onto g \in X \Rightarrow g^{d_2} \in G$ and $g^{d_2} K \mapsto g^{d_2} g^{d_2} = g$.
H is clearly continuous; The inverse map is $X \mapsto X^{d_3} K$ cohich is contributes.

Lecture 11: Two models of and a metric on X
Thursday, February 9.2017 12:05 PM
. G
$$(\rightarrow G/K)$$
 by left multiplication; we define $G (\rightarrow X)$
in a way that makes $G/K \rightarrow X$. $gK \mapsto gg^{\pm}$, G -equivariant.
 $g \cdot x := g \propto g^{\pm}$ (Notice $g(g'K) = (gg')K \mapsto (gg')(gg')^{\pm}$
 $= g(g'g'^{\pm})g^{\pm}$)
. Pon $\underset{exp}{\overset{bas}{\underset{exp}{\underset{exp}{\atop{free}}}} Sca:= \frac{9}{2} \times e M_{n}(\mathbb{R}) | x - x^{\pm} 3$ are analytic homeon.
So $\log : X \longrightarrow \mathfrak{p} \in Lie(G)$ is a bianalytic homeomorphism.
Def. On Pan we define the following Riemannian metric:
 $\left(\frac{ds}{dt}\right)^{2} = Tr((p^{\pm}p')^{2}),$
where $p(t)$ is a differentiable path in Pan.
Equivalently we can identify the tangent space $T_{p}X$ with
the symmetric spaces and define the Riemannian dot product
as $\langle x_{1}, x_{2} \rangle := tr(p^{\pm}x_{1}p'x_{2})$. Notice that $\langle x_{1}, x_{2} \rangle_{p}$ is
clearly billnear, and $\langle x, \infty \rangle_{p} = tr(p^{\pm}x_{1}p'x_{2})$ is positive definite.
Lemma. $G \cap X$ preseves this Riemannian structure.

Lecture 11: Why is X symmetric? Tuesday, February 14, 2017 $\underbrace{PP}_{\mathcal{P}} < g \cdot x_1, g \cdot x_2 > = tr((gpg^{\dagger})^{-1}(gx_1g^{\dagger})(gpg^{\dagger})^{-1}(gx_2g^{\dagger}))$ $= tr((g^{t})^{-1} p^{-1} g^{-1} g x_{1} g^{t}(g^{t})^{-1} p^{-1} g^{-1} g x_{2} g^{t})$ $= \pm r\left(\left(q^{\dagger}\right)^{-1} p^{-1} x_{1} p^{-1} x_{2} \left(q^{\dagger}\right)\right)$ $= tr(p^{-1}x_1p^{-1}x_2) = \langle x_1, x_2 \rangle_{p}$ Lemma (Symmetric) $\forall p \in X, \exists \sigma_p \in Isom(X), \sigma_p(p) = p and (d\sigma_p)(x) = -x.$ PP. Since G TX transitively and isometrically, it is enough to prove this for IEX. For G_K model, let $O'_I(gK) = (g^t)^I K$ (why is it well-defined?) For P(n) model, let $\sigma_{I}(p) = p^{1}$. So X is a symmetric Riemannian space The following lemma helps us to get a better understanding of geodesics in X. Theorem. Along any differentiable path p(t) in P(n), $\operatorname{Tr}\left(\left(\frac{d}{d+}\log \operatorname{p(t)}\right)^{2}\right) \leq \operatorname{Tr}\left(\left(\operatorname{p^{-1}}_{q}\right)^{2}\right),$ with equality if and only if p and p commute.