Lecture 7: Translates of powers of an \mathbb{R}-regular element

Next we will prove the following:
Theorem. Let $a_{0}=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right)$ where $\lambda_{1}>\cdots>\lambda_{n}>0$ and $\Pi \lambda_{i}=1$. (all ding-)
Then (1) for any $g \in N \sim_{-}^{\sim} \widetilde{S l}_{S_{n}(\mathbb{R})}^{(A)} N_{+}$, for $k \geqslant 1, g a_{g}^{k}$ is \mathbb{R}-regular.
(2) No conjugacy class is a subset of

$$
S_{a_{0}}:=S L_{n}(\mathbb{R}) \backslash N_{-} C_{S L_{n}(\mathbb{R})}(A) N_{+}
$$

(Notice that $S_{a_{0}}$ is a proper Zariski-closed subset of $S L_{n}(\mathbb{R})$.)
Lemma. Let $C_{0} \subseteq N^{-}$be a compact subset and $t>1$. Then there is a compact subset $C_{1} \subseteq N^{-}$such that

$$
C_{0} a \subseteq\left\{g a g^{-1} \mid g \in C_{1}\right\}
$$

for any $a \in A_{t}$.

we show, for a compact subset $C_{0}^{(k)} \subseteq U_{k}$, there is a compact subset $C_{1}^{(k)} \subseteq U_{k}$ s.t.

$$
C_{0}^{(k)} a U_{k+1} \subseteq\left\{g a g^{-1} \mid g \in C_{1}^{(k)}\right\} U_{k+1} .
$$

Notice that U_{k} is a normal subgroup of $N^{-} A$.

Lecture 7: Translates of powers of an \mathbb{R}-regular element
Sunday, January 22, 2017 3:14 PM
For $g=\left[\begin{array}{ccccccc}1 & & & & & \\ 0 & 1 & & & & \\ \vdots & \ddots & & & & \\ 0 & & & & & \\ g_{k+1,1} & & & & & \\ \vdots & \ddots & \ddots & & & \\ g_{n, 1} & \cdots & g_{n n-k}^{\infty} & \cdots & 0 & 1\end{array}\right]$
we have

$$
\left(g a g^{-1} a^{-1}\right)_{i j}=g_{i j}-a_{i} a_{j}^{-1} g_{i j j}=\left(1-a_{i} a_{j}^{-1}\right) g_{i j}
$$

for $(i, j) \in\{(k+1,1),(k+2,2), \cdots,(n, n-k)\}$.
Since $a \in A_{t}$, for $i>j$, we have $0<a_{i} a_{j}^{-1}<\frac{1}{t}$. Hence for $i>j, 1-\frac{1}{t}<1-a_{i} a_{j}^{-1}<1$. So for a given c from a bounded subset of $U_{k}, \exists g$ from a bounded subset of N s.t.

$$
\operatorname{gag}^{-1} a^{-1} U_{k+1}=c U_{k+1}
$$

Proof of theorem (1) Let $g=n_{-} d n_{+}$where $n_{-} \in N^{-}, n_{+} \in N^{+}$, and $d \in A$. So $g a_{0}^{k}=\left(n_{-} d a_{0}^{k}\right)\left(a_{0}^{-k} n_{+} a_{0}^{k}\right)$. By the previous lemma, \exists a compact subset C_{1} of N_{-}such that $n_{-} d a_{0}^{k}=u_{-} d a_{0}^{k} u_{-}^{-1}$ for some $u_{-} \in C_{1}$. Now applying Proposition' for $C:=C_{1}$ and (small) nohds O_{A}, O_{G} of I in A and $S L_{n}(R)$ we get a nbhd U_{G} of I such that:

Lecture 7: Translates of powers of an \mathbb{R}-regular element Sunday, January 22, 2017 4:13 PM

$$
\begin{array}{r}
\left.\forall u \in C_{1}, a^{\prime} \in A_{t}, u_{-} a^{\prime} u_{-}^{-1} U_{G} \subseteq u_{-} \xi g^{\prime} a^{\prime} d^{\prime} g^{\prime-1} \mid g^{\prime} \in O_{G}\right\} u^{-1} . \\
d^{\prime} \in O_{A}
\end{array}
$$

Now, for large enough k, (1) $d a_{0}^{k} \in A_{t}$,
(2) $a_{0}^{-k} n_{+} a_{0}^{k} \in U_{G}$.

Therefore $\quad n_{-} d n_{+} a_{0}^{k}=\left(n_{-} d a_{0}^{k}\right)\left(a_{0}^{k} n_{+} a_{0}^{k}\right)$

$$
\left.\left.\in\left(u_{-} d a_{0}^{k} u_{-}^{-1}\right) U_{G} \subseteq u_{-} \xi g^{\prime} d a_{0}^{k} d^{\prime} g^{-1}\right|_{\substack{ \\ \\ \\\in Q_{G} \\ G_{A}}}\right\} u^{-1} .
$$

Hence, for large enough $k, g a_{0}^{k}$ is \mathbb{R}-regular and the $j^{\text {th }}$ eigenvalue of $g a_{0}^{k}$ is in $\left(\frac{1}{\eta} \lambda_{j}^{k} d_{j}, \eta \lambda_{j}^{k} d_{j}\right)$ where $d=\operatorname{diag}\left(d_{1}, \ldots, d_{n}\right)$.
Part (2) Suppose $\left\{g x g^{-1} \mid g \in S_{n}(\mathbb{R})\right\} \subseteq S_{a_{0}}$. (Just using permutation matrices we can get a contradiction, but the following prof works for other semisimple Lie groups.) Suppose $E \subseteq S_{a_{0}}$ is Zariski-closed and $g E g^{-1}=E$ for any $g \in S L_{n}(\mathbb{R})$. So $O:=S L_{n}(\mathbb{R}) \backslash E \supseteq N_{-} A N_{+}$is G-invar. under conjugation. Hence $N_{+} N_{-} A N_{+} \subseteq \bigcup_{n_{+} \in N_{+}} n_{+} O n_{+}^{-1}=0$.

Lecture 7: Translates of powers of an \mathbb{R}-regular element
Sunday, January 22, 2017

$$
\Rightarrow O \supseteq N_{+} A N_{-} N A N_{+}
$$

(AN_ is a subgp)
Let $\bar{J}:=N_{-} A N_{+}$. So $\bar{\delta}^{-1} \bar{\delta} \subseteq 0$.
A similar argument gives us $J^{-1} J \subseteq 0$ where

$$
\delta=N_{-} C_{S L_{n}(\mathbb{R})}(A) N_{+} .
$$

Since J is a Zariski-apen, dense subset of $S L_{n}(\mathbb{R})$, $\forall g \in S L_{n}(\mathbb{R}), \quad J g \cap J \neq \varnothing$. So $g \in J^{-1} J \subseteq 0$,
$\Rightarrow O=S L_{n}(\mathbb{R})$, which contradicts $E \neq \varnothing$.

Lecture 7: Finding \mathbb{R}-regular elements in Γ
Friday, January 20, 2017 5:23 PM
Proposition. Let T be a lattice in $S L_{n}(\mathbb{R})$. Then for any $\lambda_{1}>\cdots>\lambda_{n}>0, \lambda_{1} \ldots \lambda_{n}=\frac{1}{1}$ and $\eta>1$, there are positive integers $m_{1}<m_{2}<\ldots$ and $\gamma_{1}, \gamma_{2}, \ldots \in I$ such that the following hold:
(1) γ_{i} 's are \mathbb{R}-regular with positive eigen-values

$$
\lambda_{1}\left(\gamma_{i}\right)>\lambda_{2}\left(\gamma_{i}\right)>\cdots>\lambda_{n}\left(\gamma_{i}\right)>0 .
$$

(2)

$$
\frac{1}{\eta} \lambda_{j}^{m_{i}}<\lambda_{j}\left(\gamma_{i}\right)<\eta \lambda_{j}^{m_{i}}
$$

for $\quad 1 \leq j \leq n$.
Proof. Let $a_{0}:=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right)$. By the corollary of the main proposition, we got a nohd U_{G} of I is $S L_{n}(\mathbb{R})$ such that any element of $U_{G} a_{0}^{m_{i}} U_{G}$ satisfies (1) and (2).

Let $U_{G}^{\prime}:=U_{G} \cap U_{G}^{-1}$ and consider $a_{0}^{i} U_{G}^{\prime} \Gamma / \Gamma$.
Since all of them have the same measure, $\exists \circ<k_{1}<k_{2}$ s.t.

$$
a_{0}^{a_{1}} U_{G}^{\prime} \Gamma \cap a_{0}^{k_{2}} U_{G}^{\prime} \Gamma \neq \varnothing \Rightarrow \Gamma \cap U_{G}^{\prime-1} a_{0}^{k_{2} k_{1}} U_{G}^{\prime} \neq \varnothing
$$

Repeating this argument for powers of a_{0}, we get $\exists m_{1}<m_{2}<\cdots$ and $\gamma_{i} \in \Gamma \cap U_{G}^{\prime} a_{0}^{m_{i}} U_{G}^{\prime}$ which completes the proof.

StrongRigidity Page 6

Lecture 7: Set of \mathbb{R}-regular elements of Γ
Sunday, January 22, 2017 5:00 PM

Let $I^{(r)}:=\{\gamma \in \Gamma \mid \gamma$ is \mathbb{R}-regular $\}$. So the previous Proposition implies $\exists \gamma_{0} \in I^{(r)}$ with positive eigenvalues.
Hence for any $\gamma_{1} \in I \backslash S_{\gamma_{0}}$ (as in the theorem on translate of powers of \mathbb{R}-regular elements) we have

$$
\gamma_{1} \gamma_{0}^{n} \in \Gamma^{(r)} \text { for any } n>_{\gamma_{1}, \gamma_{0}} 1
$$

Claim. $\exists \gamma \in \Gamma$ such that $\gamma \gamma_{1} \gamma^{-1} \notin S_{\gamma_{0}}$.
Pf of claim If not, the Zariski-closure S of $\left\{\gamma \gamma_{1} \gamma^{-1} \mid \gamma \in \Gamma\right\} \subseteq S_{\gamma_{0}}$. Since S is I-invariant (under conjugation), by Borel's density theorem S is $S_{n}(\mathbb{R})$-invariant (under conjugation). This contradicts part (2) of Theorem which says no conjugacy class is a subset of $S_{\gamma_{a}}$.

Overall we get:
Corollary. $\forall \gamma_{0} \in \Gamma^{(r)}, \gamma_{1} \Gamma, \exists n_{0} \in \mathbb{Z}^{+}, \gamma \in \Gamma$ st. $\gamma \gamma_{1} \gamma^{-1} \gamma_{0}^{n} \in \Gamma^{(r)}$ for $n \geq n_{0}$.

Lecture 7: Trace rigidity of -regular elements implies trace rigidity (Step 2)
Sunday, January 22, 2017 5:17 PM
Proof of Step 2 let $\gamma_{0} \in \Gamma^{(r)}$ with positive eigen-value. So for small values of $t, \rho_{t}\left(\gamma_{0}\right)$ is \mathbb{R}-regular with positive eigen-values. By the assumption, for any $n \in \mathbb{Z}^{+}$, $\operatorname{tr}\left(\gamma_{0}^{n}\right)=\operatorname{tr}\left(\rho_{t}\left(\gamma_{0}\right)^{n}\right)$. Hence γ_{0} and $\rho_{t}\left(\gamma_{0}\right)$ have the same eigen-values. Therefore $\exists g_{t} \in S L_{n}(\mathbb{R})$ st.
(1) $g_{t} \rightarrow I$, (2) $g_{t} f_{t}\left(\gamma_{0}\right) g_{t}^{-1}=\gamma_{0}$. So after changing ρ_{t} by a (continuous) conjugation, we can assume $\rho_{t}\left(\gamma_{0}\right)=\gamma_{0}$.
Further we can assume $\gamma_{0}=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right)$ for $\lambda_{1}>\cdots>\lambda_{n}>0$ (Changing I by a conjugation.)
For any $\gamma_{1} \in \Gamma, \exists v \in \Gamma, n \in \mathbb{Z}^{+}$s.t.

$$
\forall k \geq n_{1}, \quad \gamma \gamma_{1} \gamma^{-1} \gamma_{0}^{k} \in \Gamma^{(n)}
$$

Hence $\operatorname{tr}\left(\gamma \gamma_{1} \gamma^{-1} \gamma_{0}^{k}\right)=\operatorname{tr}\left(\rho_{t}\left(\gamma \gamma_{1} \gamma^{-1}\right) \rho_{t}\left(\gamma_{0}\right)^{k}\right)$

$$
=\operatorname{tr}\left(\rho_{t}\left(\gamma \gamma_{1} \gamma^{-1}\right) \gamma_{0}^{k}\right) .
$$

Notice $\operatorname{tr}\left(\left[\begin{array}{cccc}x_{11} & \cdots & x_{1 n} \\ \vdots & \ddots & \vdots \\ x_{n 1} & \cdots & x_{n n}\end{array}\right]\left[\begin{array}{lll}\lambda_{1}^{k} & & \\ & \ddots & \\ & & \lambda_{n}\end{array}\right]\right)=\sum_{i=1}^{n} \lambda_{i}^{k} x_{i i} \cdot A_{s} \lambda_{i} \neq \lambda_{j}>0$, by \otimes we get the diag. entries of $\gamma \gamma_{1} \gamma^{-1}$ and $\rho_{t}\left(\gamma \gamma_{1} \gamma^{-1}\right)$

Lecture 7: Proof of Step 2
Sunday, January 22, 2017 6:13 PM
are the same. So $\operatorname{tr}\left(\gamma \gamma_{1} \gamma^{-1}\right)=\operatorname{tr}\left(\rho_{t}\left(\gamma \gamma_{1} \gamma^{-1}\right)\right)$. Thus $\operatorname{tr}\left(\gamma_{1}\right)=\operatorname{tr}\left(\rho_{t}\left(\gamma_{1}\right)\right)$ for any $\gamma_{1} \in I$. Therefore by step 1 we are done.

