Lecture 6: Reformulation; Stability of \mathbb{R} -regularity

Tuesday, January 17, 2017

10.22 AM

Proposition'. Let C be a compact subset of G, let Q_G be a nbhd of I in A, and t>1. Then there is a nbhd U_G of I in $SL_n(\mathbb{R})$ such that for any $k\in C$

and a & At we have

 $kak^{-1}U_{G} \subseteq k \{gadg^{-1} | g \in \mathcal{O}_{G}, d \in \mathcal{O}_{A}\} k^{-1}$

Proposition \Rightarrow Proposition.

Let $\mathcal{O}_G' \subseteq \mathcal{O}_G$ be a hbhd of I such that (1) $(0)_G'$ is bounded. and

and t, to get a nbhd U_G of I in $SL_n(\mathbb{R})$ such that $\forall k \in \overline{\mathcal{O}}_G$, as A_1 ,

kak U' = k { gad g-1 | g = Q', d = O, } k1.

Let C' be a compact subset of Ogn Ug such that IEC . And

Let $U := (C')^{\circ} \cap \bigcap_{k \in C'} k^{-1} U_{G'}^{\prime}$.

Claim V is a noble of I in SLn(R).

Pf of claim. Ie(C') and the(CU, IekU, imply IeU.

If U is NOT open, then $C\setminus U$ is NOT closed. So $\exists \; lpha_i \in C\setminus U$

st. $x_i \rightarrow x \in U$. Hence, for any i, $\exists k_i \in C$ st. $k_i x_i \notin U_G'$.

Passing to a subseque can assume $k_i \rightarrow k \in C$. Since U_G is open

and $k_i x_i \notin U_{G}'$, $k_i x_i \longrightarrow k_X \notin U_{G}'$. So $x \notin k^{-1}U_{G}'$, which

contradicts our assumption that $x \in U$. \square

Lecture 6: Reformulation; Stability of $\mathbb R$ -regularity

Friday, January 20, 2017 12::

Now, let
$$U_{G} := U \cdot For$$
 any $a \in A_{t}$, $g_{1}, g_{2} \in U_{G}$,

 $g_{1} a g_{2} = g_{1} a g_{1}^{-1} g_{1} g_{2} \in g_{1} a g_{1}^{-1} g_{1} U_{G} \subseteq g_{1} a g_{1}^{-1} U_{G}^{\prime}$

(as $g_{1} \in C^{\prime}$)

 $= g_{1} g_{2} a d g_{1}^{-1} | g \in O_{G}^{\prime}, d \in O_{A} g_{1}^{-1}$
 $= g_{1} g_{1} g_{1} a d (g_{1} g_{1})^{-1} | g \in O_{G}^{\prime}, d \in O_{A} g_{1}^{\prime}$
 $\subseteq g_{1} a d g_{1}^{-1} | g \in O_{G}^{\prime}, d \in O_{A} g_{1}^{\prime}$

(as $O_{G}^{\prime} \cap O_{G}^{\prime} \subseteq O_{G}^{\prime}$
 $= g_{1} g_{1} a d g_{1}^{-1} | g \in O_{G}^{\prime}, d \in O_{A} g_{1}^{\prime}$

(as $O_{G}^{\prime} \cap O_{G}^{\prime} \subseteq O_{G}^{\prime}$
 $= g_{1} g_{1} a d g_{1}^{-1} | g \in O_{G}^{\prime}, d \in O_{A} g_{1}^{\prime}$

(as $O_{G}^{\prime} \cap O_{G}^{\prime} \subseteq O_{G}^{\prime}$

and $g_{1} \in C^{\prime} \subseteq O_{G}^{\prime}$.)

Remark. The advantage of Proposition' to Proposition is on the fact that, now we can put "unknown" set on one side and "the rest" on the other side: we have to show

Lecture 6: Proof of Proposition'

Thursday, January 19, 2017

11.09 AM

Lemma. Let 0 be a nobld of I in G, and let C be a compact

a subset of G. Then $\bigcap_{k \in C} k O k^{-1}$ is a noble of I in G.

 \underline{P} If not, $\exists x_i \notin \bigcap_{k \in C} k O_k^{-1}$ st. $x_i \longrightarrow x \in \bigcap_{k \in C} k O_k^{-1}$.

So, for any i, $\exists k_i \in \mathbb{C}$ s.t. $x_i \notin k_i \bigcirc k_i^{-1} \Rightarrow k_i x_i k_i \notin \mathbb{O}$

Passing to a subsequence, we can assume $k; \longrightarrow k \in C$. So

 $k_i^{-1} x_i k_i \longrightarrow k^{-1} x_i k$. Since O is open and $k_i^{-1} x_i k_i \notin O$,

we get that $k^{-1}xk \notin O$. Hence $x \notin kOk^{-1}$ which contradicts

our assumption that $x \in \bigcap k' \bigcirc k^{-1}$. \square

Using the above lemma, to prove Proposition, it is enough to show

Using the N-xAxN-decomposition, replacing of by a smaller

noble of I we can assume $Q_q = Q_N - Q_N + Q_A'$ for some bounded

nbhds of I in N^{-} , N^{+} , and A. So we need to show:

If it is NOT the case, then $\exists x_i \longrightarrow I$ and $x_i \notin O$.

Lecture 6: Proof of Proposition'

Thursday, January 19, 2017

11:38 AM

Since $x_i \notin \mathcal{O}$, for any i there is $a_i \in A_t$ s.t.

$$\chi_{i} \notin \mathcal{O}(\alpha_{i}) := \alpha_{i}^{-1} \{ n_{-} n_{+} \alpha_{i} d n_{+}^{-1} n_{-}^{-1} | n_{+} \in \mathcal{O}_{N_{+}}, n_{-} \in \mathcal{O}_{N_{-}}, d \in \mathcal{O}_{A} \}.$$

We can further assume $x_i \in \overline{O(a_i)}$ as $O(a_i)$ contains a nond

of I in SL_n(R). Hence

$$x_i = a_i^{-1} n_+^{(i)} n_+^{(i)} a_i d_i n_+^{(i)^{-1}} n_-^{(i)^{-1}}$$
 for some

$$(n_{+}^{(i')}, n_{-}^{(i')}, d_{i'}) \in \overline{\mathcal{O}}_{N_{+}} \times \overline{\mathcal{O}}_{N_{-}} \times \overline{\mathcal{O}}_{A} \setminus \mathcal{O}_{N_{+}} \times \mathcal{O}_{N_{-}} \times \mathcal{O}_{A}$$

Passing to subsequence, we can assume

$$n_{+}^{(i)} \longrightarrow n_{+} \in \overline{\mathbb{O}}_{N_{+}}, n_{-}^{(i)} \longrightarrow n_{-} \in \overline{\mathbb{O}}_{N_{-}}, d_{i} \longrightarrow d \in \widehat{\mathbb{O}}_{A}$$

As
$$x_i \rightarrow I$$
, we get that $a_i^{-1} n_+^{(i)} a_i \xrightarrow{} n_- n_+ d$. So

$$a_i^{-1} n_-^{(i)} a_i \cdot a_i^{-1} n_+^{(i)} a_i \longrightarrow n_- n_+ d$$

Since $n_{i}^{(i)}$ is bounded and $a_{i} \in A_{t}$, $a_{i}^{(i)} = a_{i}$ is bounded.

So passing to a subseq. we can assume $a_1^{-1} n^{(i)} a_1 \rightarrow n'$.

Hence
$$a_{i}^{-1} n_{+}^{(i)} a_{i} \longrightarrow n_{-}^{\prime -1} n_{-} n_{+} d$$
.

Therefore by $N_x A_x N_+$ -decomposition, d=1, $n'=n_-$, and $a_i^{-1} n_+^{(i)} a_i \longrightarrow n_+$. Since $a_i \in A_t$, conjugation by a_i .

Lecture 6: Proof of Proposition'

Friday, January 20, 2017

5:16 PM

expands Nt and contracts N. So

$$\begin{array}{c}
 n_{+}^{(i)} \longrightarrow n_{+} \\
 a_{1}^{-1} n_{+}^{(i)} a_{2} \longrightarrow n_{+}
\end{array}$$

$$\Rightarrow n_{+} = I \quad \text{and} \quad n_{-}^{(i)} \longrightarrow n_{-} \\
 a_{1}^{-1} n_{+}^{(i)} a_{2} \longrightarrow n_{+}$$

$$\Rightarrow n_{+} = I \quad \text{and} \quad n_{-}^{(i)} \longrightarrow n_{-} \\
 a_{1}^{-1} n_{-}^{(i)} a_{2} \longrightarrow n_{-}$$

80, for large enough i, $n_{+}^{(i)} \in \mathcal{O}_{N_{+}}$, $n_{-}^{(i')} \in \mathcal{O}_{N_{-}}$, $d_{i} \in \mathcal{O}_{A}$ which

contradicts the fad that (n(i), n(i), d;) & ON × ON × ON.