Going back Margulis's thesis, we have seen the correction between mixing and counting problems. Here we would like to see a result of Duke-Ruchick-Sarnak using Howe-Moore theorem.
Theorem.

$$
\begin{aligned}
& \text { Let } B_{T}:=\left\{g \in S L_{n}(\mathbb{R}) \mid\|g\| \leq T\right\} \\
& \operatorname{vol}\left(B_{T}\right):=\left|S L_{n}(\mathbb{Z}) \cap B_{T}\right| \text {, and }
\end{aligned}
$$

vol $\left(B_{T}\right)$ be the volume of $B_{T}$ w.r.t. a Haar measure of $S L_{n}(\mathbb{R})$ s.t. $\operatorname{vol}\left(_{S L_{n}(\mathbb{Z})} S L_{n}(\mathbb{R})\right)=1$.

Then $\quad \operatorname{vol}_{\mathbb{Z}}\left(B_{T}\right) \sim \operatorname{vol}\left(B_{T}\right)$.
Remark. D-R-S proved this type of equidistribution of integer points for affine, symmetric, homogeneous varieties: $\mathbb{G} / \mathbb{H}$ where $\mathbb{G}$ and $\mathbb{H}$ are reductive, $\tau: \mathbb{G} \rightarrow \mathbb{G}$ is an algebraic involution and $H:=\{g \in \mathbb{G} \mid \tau(g)=g \delta$. The above example is a particular case : $\quad S L_{n} \times S L_{n} / \Delta\left(S L_{n}\right)$.

Later Eskin-Mozes-Shah removed the symmetric assumption, and assume $H$ is maximal and not a parabolic subgroup. Their work is based on Rather's theorems.
Pf of theorem. Let $\widetilde{F}_{T}\left(g_{1}, g_{2}\right):=\sum_{\sim \in S L_{n}(\mathbb{Z})} \mathbb{1}_{B_{T}}\left(g_{1}^{-1} \gamma g_{2}\right)$, and $F_{T}\left(g_{1}, g_{2}\right):=\frac{1}{v o l(B-1} \widetilde{F}_{T}\left(g_{1}, g_{2}\right)$.

Observation.

$$
\begin{aligned}
\tilde{F}_{T}\left(g_{1} \gamma_{1}, g_{2} \gamma_{2}\right) & =\sum_{\gamma} \mathbb{1}_{B_{T}}\left(g_{1}^{-1} \gamma_{1}^{-1} \gamma \gamma_{2} g_{2}\right) \\
& =\sum_{\gamma} \mathbb{1}_{B_{T}}\left(g_{1}^{-1} \gamma g_{2}\right) \\
& =\widetilde{T}_{T}\left(g_{1}, g_{2}\right)
\end{aligned}
$$

So we get functions on $G / \Gamma \times G / \Gamma$. We would like to show that

$$
F_{T}(I, I) \longrightarrow 1
$$

First we prove a weak convergence:

Pf of claim. Suppose $\phi_{1}, \phi_{2} \in C_{C}^{\infty}\left(\prod^{G}\right)$

$$
\begin{aligned}
& =\frac{1}{\operatorname{vol}\left(B_{T}\right)} \int_{T^{G}} \phi_{1}([g]) \int_{G} \mathbb{1}_{B_{T}}\left(g^{-1} g\right) \phi_{2}([g]) d g \quad d\left[g_{1}\right] \text {. } \\
& =\frac{1}{\operatorname{voL}\left(B_{T}\right)} \int_{\mathcal{F}} \phi_{1}\left(g_{1}\right) \int_{B_{T}} \phi_{2}(g, g) d g d g_{1} \\
& =\frac{1}{\operatorname{vol}\left(B_{T}\right)} \int_{B_{T}} \int_{F} \phi_{1}\left(g_{1}\right) \rho(g)\left(\phi_{2}\right)\left(g_{1}\right) d g_{1} d g
\end{aligned}
$$

$$
=\frac{1}{\operatorname{vol}\left(B_{T}\right)} \int_{B_{T}}\left\langle\Phi_{1}, \rho(g) \Phi_{2}\right\rangle d g .
$$

By Howe-Moore, $\forall \varepsilon>0$, if $\|g-I\| \gg 1$, then $\left\langle\phi_{1}, \rho(g) \phi_{2}\right\rangle=\int \phi_{1} \int \phi_{2}$

$$
+O_{\Phi_{1}, \phi_{2}}(\varepsilon)
$$

$$
\begin{aligned}
S_{0}\left\langle F_{T}, \Phi_{1} \otimes \Phi_{2}\right\rangle & =\frac{1}{\operatorname{vol}\left(B_{T}\right)}\left(\int_{B_{T_{\varepsilon}}}\left\langle\Phi_{1}, \rho(g) \phi_{2}\right\rangle d g\right. \\
& \left.+\int_{B_{T} B_{T_{\varepsilon}}}\left[\left(\int \Phi_{1} \int \Phi_{2}\right)+O(\varepsilon)\right] d g\right) \\
= & \frac{\left.\int_{B_{\varepsilon}}\left\langle\Phi_{1}\right) \rho(g) \Phi_{2}\right\rangle d y}{\operatorname{vol}\left(B_{T}\right)} \\
& +\frac{\left(\int \Phi_{1} \int \Phi_{2}\right)\left(\operatorname{vol}\left(B_{T}\right)-\operatorname{vol}\left(B_{T_{\varepsilon}}\right)\right)}{\operatorname{vol}\left(B_{T}\right)} \\
& +O(\varepsilon) \frac{\operatorname{vol}\left(B_{T}\right)-\operatorname{vol}\left(B_{T_{\varepsilon}}\right)}{\operatorname{vol}\left(B_{T}\right)}
\end{aligned}
$$

For a fixed $\varepsilon$, let $T$ go to infinity:

$$
\left\langle F_{T}, \Phi_{1} \otimes \phi_{2}\right\rangle=\left\langle\mathbb{1}, \phi_{1} \otimes \Phi_{2}\right\rangle+O_{\phi_{1} \phi_{2}}^{(\varepsilon)}
$$

$\Rightarrow F_{T} \longrightarrow \mathbb{1}_{T \rightarrow \infty}{ }_{T \text { fix p }}$ weakly.
We need the following facts about ' $B_{T}$, in order to get pointwise convergence. (This step is sometimes called well-roundedness of $B_{T}$ ).
 (2) $\operatorname{rol} B_{T} \sim c T^{n^{2}-n}$

Proof of (2) is NOT that easy, but heuristically it should make sense:

$$
\left.\begin{array}{c}
\operatorname{vol}\left(\left\{\left[x_{i j}\right]\left|\left|x_{i j}\right| \leq T\right\}\right)=T^{n^{2}}\right. \\
\left.\operatorname{det}\left(\xi\left[x_{i j}\right]\left|x_{i j}\right| \leq T \xi\right) \subseteq E c^{n}, T^{n} T^{n}\right]
\end{array}\right\} \Rightarrow \text { } \begin{gathered}
\operatorname{vol}\left(\left\{g \in S L_{n}(\mathbb{R}) \mid\|g\| \leq T \xi\right)=c T^{n^{2}-n} .\right.
\end{gathered}
$$

What we need is the following:
$\exists$ two continuous functions $c_{1}$ and $c_{2}$ s.t.

$$
\left.c_{1}(\varepsilon) \leq \lim _{T \rightarrow \infty} \frac{\operatorname{vol}\left(B_{c-\varepsilon T}\right)}{\operatorname{vol}\left(B_{T}\right)} \leq \overline{\lim }_{T \rightarrow \infty} \quad \frac{\operatorname{vol}\left(B_{(1+\varepsilon) T}\right)}{\operatorname{vol}\left(B_{T}\right)} \leq c_{2}(\varepsilon)\right\}
$$

and $\lim _{\varepsilon \rightarrow 0} c_{i}(\varepsilon)=1$.
Clearly holds because of (2). Ht might be easier to prove © directly; I leave it as a question for you to try it out:
(Q) Can one use the following formula

$$
\begin{aligned}
& \int_{S L_{n}(\mathbb{R})} f(g) d g= \\
& \quad \int_{K} \int_{A^{+}} \int_{K} \prod_{\varphi \in \Phi^{+}}\left(\frac{\alpha(a)-\alpha(a)^{-4}}{2}\right) f\left(k_{1}, a k_{2}\right) d k_{1} d a d k_{2}
\end{aligned}
$$

to get $\otimes$ ? Notice that $B_{T}$ is bi-K-invariant:

$$
\operatorname{vol}\left(B_{T}\right)=\int_{\left(a_{1}, \cdots, a_{n} f \mathbb{R}^{+6-1)}\right.} \prod_{1 \leq i<j \leq n} \frac{a_{i}^{2}-a_{j}^{2}}{2 a_{i} a_{j}} \frac{d a_{1} \cdots d a_{n-1}}{a_{1} \cdots a_{n-1}}
$$

$$
T \geq a_{1} \geq \cdots \geq a_{n-1} \geq a_{n}
$$

where $a_{n}=\left(a_{1} \cdots \cdots a_{n-1}\right)^{-1}$.
Suppose $\xi_{\varepsilon} \in C_{c}^{\infty}(G)$ st.(1) $0 \leq \xi_{\varepsilon}$
(2) $\operatorname{supp}\left(\xi_{\varepsilon}\right) \subseteq O_{\varepsilon}$
(3) $\int \xi_{\varepsilon}(g) d g=1$.

Let $\hat{\xi}_{\varepsilon}\left(T_{g}\right):=\sum_{\gamma \in \Gamma} \xi_{\varepsilon}(\gamma g)$. Then $\operatorname{supp}\left(\hat{\xi}_{\varepsilon}\right) \subseteq \pi\left(\mathcal{O}_{\varepsilon}\right)$ and


$$
\begin{aligned}
& \left\langle F_{T}, \hat{\xi}_{\varepsilon} \otimes \hat{\xi}_{\varepsilon}\right\rangle=\int_{I^{G F_{\Gamma}}{ }^{G}} F_{T}\left([g]_{1},\left[g_{2}\right]\right) \sum_{\gamma_{1}, \gamma_{2}} \xi_{\varepsilon}\left(\gamma_{1} g\right) \xi_{\varepsilon}\left(\gamma_{2} g_{2}\right) d\left[g_{]} d g_{g}\right] \\
& =\int_{G \times G} F_{T}\left(g_{1}, g_{2}\right) \xi_{\varepsilon}\left(g_{1}\right) \xi_{\varepsilon}\left(g_{2}\right) d g_{1} d g_{2} \\
& =\int_{O_{\varepsilon} \times O_{\varepsilon}} F_{T}\left(g_{1}, g_{2}\right) \xi_{\varepsilon}\left(g_{1}\right) \xi_{\varepsilon}\left(g_{2}\right) d g_{1} d g_{2} \\
& F_{T}\left(g_{1}, g_{2}\right)=\frac{1}{\operatorname{vol}\left(B_{T}\right)} \sum_{\gamma \in I} \mathbb{1}_{B_{T}}\left(g_{1}^{-1} \gamma g_{2}\right) \leq \frac{\operatorname{vol}\left(B_{\left.(H E)^{2} T\right)}\right.}{\operatorname{vol}\left(B_{T}\right)} F_{\left(1+\varepsilon_{T}^{2} T\right.}(I I) \\
& \text { VI } \\
& \frac{\operatorname{vol}\left(B_{\left.(1+\varepsilon)^{-2}\right)}\right)}{\operatorname{vol}\left(B_{T}\right)} F_{(1+\varepsilon)^{-2} T}(I, I) \quad \text { for } \quad g_{i} \in O_{\varepsilon} \text {. } \\
& \Rightarrow \frac{\operatorname{vol}\left(B_{\left.(+\varepsilon)^{2} T\right)}\right.}{\operatorname{vol}\left(B_{T}\right)} F_{(1+\varepsilon)^{-2} T}(T I) \leq\left\langle F_{T}, \hat{\xi}_{\varepsilon} \otimes \hat{\xi}_{\varepsilon}\right\rangle \leq \frac{\operatorname{vol}\left(B_{\left(+\varepsilon \varepsilon^{2} T\right.}\right)}{\operatorname{vd}\left(B_{T}\right)} F_{(1+\varepsilon)^{2} T}\left(I_{,} I\right)
\end{aligned}
$$

$$
\Longrightarrow \frac{\operatorname{vol}\left(B_{\left.(H \varepsilon)^{-2} T\right)}\right.}{\operatorname{vol}\left(B_{T}\right)}\left\langle F_{T(+\infty)} \hat{\xi}_{\varepsilon} \hat{\xi}_{\varepsilon} \hat{\xi}_{\varepsilon}\right\rangle \leq F_{T}(I, I) \leq \frac{\operatorname{vol}\left(B_{\left.(H+\varepsilon)^{2} T\right)}^{\operatorname{vol}\left(B_{T}\right)}\left\langle F_{T(1+\varepsilon)^{2}}, \hat{\xi}_{\varepsilon} \otimes \hat{\xi}_{\varepsilon}\right\rangle\right.}{}
$$

Now take $\overline{l i m}_{T \rightarrow \infty}$ and $\lim _{T \rightarrow \infty}$ for a fixed $\varepsilon$ and use weak convergence. Then use $\theta$ and let $\varepsilon \rightarrow 0$.

