
1. Let Φn(x) ∈ Z[x] be the n-th cyclotomic polynomial and for an odd prime p

which does not divide n, let Φn,p(x) ∈ Fp[x] be Φn(x) modulo p. Let E ⊆ Fp

be a splitting field of Φn,p(x) over Fp where Fp is an algebraic closure of Fp.

(a) Prove that ζ ∈ Fp is a zero of Φn,p if and only if the multiplicative

order of ζ is n.

(b) Prove that Φn,p(x) =
∏

1≤i≤n,gcd(i,n)=1(x − ζ i) where ζ ∈ F×
p is a zero

of Φn,p(x), and deduce that the restriction gives us an embedding

Gal(E/Fp) ↪→ Aut(⟨ζ⟩) ≃ (Z/nZ)×.

(c) Prove that Gal(E/Fp) ≃ ⟨p+ nZ⟩ ⊆ (Z/nZ)×.

(Hint. Notice that xn − 1 =
∏

d|nΦd(x) in Z[x], and so in

xn − 1 =
∏
d|n

Φn,p(x)

in Fp[x]. Hence, if ζ is a zero of Φn,p(x), then ζn = 1. If ζd = 1 for d < n,

then ζ is a zero of Φd,p(x); this implies that ζ is a multiple-zero of xn − 1.

Argue why this is a contradiction.

For part (c), use the fact that the Galois group of a finite field is generated

by the Frobenius map.)

2. Prove that there are infinitely many primes in the arithmetic progression

{nk + 1}∞k=1.

(Hint. Use the previous problem and show that if Φn,p has a zero in Fp,

then n|p−1. Next, suppose to the contrary there are only finitely many such

primes p1, . . . , pk0 (k0 might be zero). Consider the non-constant polynomial

f(x) := Φn(2n

k0∏
i=1

pix) ∈ Z[x].

For large enough a ∈ Z, f(a) ̸∈ {0,±1}, and so there exists a prime p which

divides f(a). Argue why p|(2n
∏k0

i=1 pia)
n − 1, and so p is odd, p ∤ n, and

p ̸= pi for every i. Argue why n|p− 1.)
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3. Suppose p is an odd prime which does not divide n, and Φn(x) is the n-th

cyclotomic polynomial. Prove that Φn(x) modulo p is irreducible in Fp[x]

if and only if p generates (Z/nZ)×.

(Hint. Use part (c) of problem 1.)

4. Suppose q = pn where p is prime and n is a positive integer. Prove that

every irreducible factor of xq − x+ 1 in Fq[x] is of degree p.

(Hint. Let E be a splitting field of xq − x + 1 over Fq. For every α ∈ E,

which is a zero of xq − x+ 1,

degmα,Fq = [Fq[α] : Fq] = |Gal(Fq[α]/Fq)|.

Argue why the restriction gives us a surjective map

Gal(E/Fq) → Gal(Fq[α]/Fq).

Argue why Gal(E/Fq) = ⟨σ⟩, where σ(x) = xq. Show that σ(α) = α − 1,

and deduce that for every integer i, σi(α) = α − i. Hence σp(α) = α and

σi(α) ̸= α for every i ∈ [1, p). Deduce that |Gal(Fq[α]/Fq)| = p.)

5. Suppose F is a field, f ∈ F [x] is irreducible, and E is a splitting field of f

over F . Suppose there exists α ∈ E such that

f(α) = f(α + 1) = 0.

(a) Prove that the characteristic of F is p > 0.

(b) Prove that there exists K ∈ Int(E/F ) such that E/K is Galois and

[E : K] = p.

(Hint. Argue why there exists θ ∈ AutF (E) such that θ(α) = α+1. Deduce

that for every k ∈ Z+, θk(α) = α + k. Because AutF (E) is a finite group,

deduce that F is of positive characteristic. Moreover, θ(F [α]) = F [α] and

the order of the restriction of θ to F [α] is p. This implies that the order

of θ is a multiple of p. Therefore, p divides the order of AutF (E). Hence,

there exists an element σ ∈ AutF (E) that has order p. Let K := Fix(σ).

Argue why E/K is Galois and Gal(E/K) = ⟨σ⟩; deduce that [E : K] = p.)

6. Suppose p is an odd prime and ζn = e2πi/n ∈ C for every positive integer n.
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(a) Prove that [Q[ζ4p] : Q[sin(2π/p)]] = 2.

(b) Prove that Q[sin(2π/p)] = Fix(1, τ) where τ is the restriction of the

complex conjugation to Q[ζ4p].

(c) Prove that Q[sin(2π/p)]/Q is a Galois extension and

Gal(Q[sin(2π/p)]/Q) ≃ (Z/4pZ)×

{±1}
;

in particular, [Q[sin(2π/p)] : Q] = p− 1.

(Hint. For the first part, notice that ζpi has multiplicative order 4p, and

its real part is sin(2π/p). )

7. Suppose n are positive integers.

(a) Prove that there exists a prime p such that Z/nZ is a quotient of

(Z/pZ)×.

(b) Suppose A is a finite abelian group. Prove that there exists a square-

free integer m such that A is a quotient of (Z/mZ)×.

(c) Suppose A is a finite abelian group. Prove that there exists a finite

Galois extension E/Q such that

Gal(E/Q) ≃ A.

(Hint. For part (a), use problem 2. For part (c), use part (b), and

Gal(Q[ζm]/Q) ≃ (Z/mZ)×.)
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