1. Let $\Phi_{n}(x) \in \mathbb{Z}[x]$ be the n-th cyclotomic polynomial and for an odd prime p which does not divide n, let $\Phi_{n, p}(x) \in \mathbb{F}_{p}[x]$ be $\Phi_{n}(x)$ modulo p. Let $E \subseteq \overline{\mathbb{F}}_{p}$ be a splitting field of $\Phi_{n, p}(x)$ over \mathbb{F}_{p} where $\overline{\mathbb{F}}_{p}$ is an algebraic closure of \mathbb{F}_{p}.
(a) Prove that $\zeta \in \overline{\mathbb{F}}_{p}$ is a zero of $\Phi_{n, p}$ if and only if the multiplicative order of ζ is n.
(b) Prove that $\Phi_{n, p}(x)=\prod_{1 \leq i \leq n, \operatorname{gcd}(i, n)=1}\left(x-\zeta^{i}\right)$ where $\zeta \in \overline{\mathbb{F}}_{p}^{\times}$is a zero of $\Phi_{n, p}(x)$, and deduce that the restriction gives us an embedding

$$
\operatorname{Gal}\left(E / \mathbb{F}_{p}\right) \hookrightarrow \operatorname{Aut}(\langle\zeta\rangle) \simeq(\mathbb{Z} / n \mathbb{Z})^{\times}
$$

(c) Prove that $\operatorname{Gal}\left(E / \mathbb{F}_{p}\right) \simeq\langle p+n \mathbb{Z}\rangle \subseteq(\mathbb{Z} / n \mathbb{Z})^{\times}$.
(Hint. Notice that $x^{n}-1=\prod_{d \mid n} \Phi_{d}(x)$ in $\mathbb{Z}[x]$, and so in

$$
x^{n}-1=\prod_{d \mid n} \Phi_{n, p}(x)
$$

in $\mathbb{F}_{p}[x]$. Hence, if ζ is a zero of $\Phi_{n, p}(x)$, then $\zeta^{n}=1$. If $\zeta^{d}=1$ for $d<n$, then ζ is a zero of $\Phi_{d, p}(x)$; this implies that ζ is a multiple-zero of $x^{n}-1$. Argue why this is a contradiction.

For part (c), use the fact that the Galois group of a finite field is generated by the Frobenius map.)
2. Prove that there are infinitely many primes in the arithmetic progression $\{n k+1\}_{k=1}^{\infty}$.
(Hint. Use the previous problem and show that if $\Phi_{n, p}$ has a zero in \mathbb{F}_{p}, then $n \mid p-1$. Next, suppose to the contrary there are only finitely many such primes $p_{1}, \ldots, p_{k_{0}}$ (k_{0} might be zero). Consider the non-constant polynomial

$$
f(x):=\Phi_{n}\left(2 n \prod_{i=1}^{k_{0}} p_{i} x\right) \in \mathbb{Z}[x] .
$$

For large enough $a \in \mathbb{Z}, f(a) \notin\{0, \pm 1\}$, and so there exists a prime p which divides $f(a)$. Argue why $p \mid\left(2 n \prod_{i=1}^{k_{0}} p_{i} a\right)^{n}-1$, and so p is odd, $p \nmid n$, and $p \neq p_{i}$ for every i. Argue why $n \mid p-1$.)
3. Suppose p is an odd prime which does not divide n, and $\Phi_{n}(x)$ is the n-th cyclotomic polynomial. Prove that $\Phi_{n}(x)$ modulo p is irreducible in $\mathbb{F}_{p}[x]$ if and only if p generates $(\mathbb{Z} / n \mathbb{Z})^{\times}$.
(Hint. Use part (c) of problem 1.)
4. Suppose $q=p^{n}$ where p is prime and n is a positive integer. Prove that every irreducible factor of $x^{q}-x+1$ in $\mathbb{F}_{q}[x]$ is of degree p.
(Hint. Let E be a splitting field of $x^{q}-x+1$ over \mathbb{F}_{q}. For every $\alpha \in E$, which is a zero of $x^{q}-x+1$,

$$
\operatorname{deg} m_{\alpha, \mathbb{F}_{q}}=\left[\mathbb{F}_{q}[\alpha]: \mathbb{F}_{q}\right]=\left|\operatorname{Gal}\left(\mathbb{F}_{q}[\alpha] / \mathbb{F}_{q}\right)\right| .
$$

Argue why the restriction gives us a surjective map

$$
\operatorname{Gal}\left(E / \mathbb{F}_{q}\right) \rightarrow \operatorname{Gal}\left(\mathbb{F}_{q}[\alpha] / \mathbb{F}_{q}\right)
$$

Argue why $\operatorname{Gal}\left(E / \mathbb{F}_{q}\right)=\langle\sigma\rangle$, where $\sigma(x)=x^{q}$. Show that $\sigma(\alpha)=\alpha-1$, and deduce that for every integer $i, \sigma^{i}(\alpha)=\alpha-i$. Hence $\sigma^{p}(\alpha)=\alpha$ and $\sigma^{i}(\alpha) \neq \alpha$ for every $i \in[1, p)$. Deduce that $\left|\operatorname{Gal}\left(\mathbb{F}_{q}[\alpha] / \mathbb{F}_{q}\right)\right|=p$.)
5. Suppose F is a field, $f \in F[x]$ is irreducible, and E is a splitting field of f over F. Suppose there exists $\alpha \in E$ such that

$$
f(\alpha)=f(\alpha+1)=0 .
$$

(a) Prove that the characteristic of F is $p>0$.
(b) Prove that there exists $K \in \operatorname{Int}(E / F)$ such that E / K is Galois and $[E: K]=p$.
(Hint. Argue why there exists $\theta \in \operatorname{Aut}_{F}(E)$ such that $\theta(\alpha)=\alpha+1$. Deduce that for every $k \in \mathbb{Z}^{+}, \theta^{k}(\alpha)=\alpha+k$. Because $\operatorname{Aut}_{F}(E)$ is a finite group, deduce that F is of positive characteristic. Moreover, $\theta(F[\alpha])=F[\alpha]$ and the order of the restriction of θ to $F[\alpha]$ is p. This implies that the order of θ is a multiple of p. Therefore, p divides the order of $\operatorname{Aut}_{F}(E)$. Hence, there exists an element $\sigma \in \operatorname{Aut}_{F}(E)$ that has order p. Let $K:=\operatorname{Fix}(\sigma)$. Argue why E / K is Galois and $\operatorname{Gal}(E / K)=\langle\sigma\rangle$; deduce that $[E: K]=p$.)
6. Suppose p is an odd prime and $\zeta_{n}=e^{2 \pi i / n} \in \mathbb{C}$ for every positive integer n.
(a) Prove that $\left[\mathbb{Q}\left[\zeta_{4 p}\right]: \mathbb{Q}[\sin (2 \pi / p)]\right]=2$.
(b) Prove that $\mathbb{Q}[\sin (2 \pi / p)]=\operatorname{Fix}(1, \tau)$ where τ is the restriction of the complex conjugation to $\mathbb{Q}\left[\zeta_{4 p}\right]$.
(c) Prove that $\mathbb{Q}[\sin (2 \pi / p)] / \mathbb{Q}$ is a Galois extension and

$$
\operatorname{Gal}(\mathbb{Q}[\sin (2 \pi / p)] / \mathbb{Q}) \simeq \frac{(\mathbb{Z} / 4 p \mathbb{Z})^{\times}}{\{ \pm 1\}}
$$

in particular, $[\mathbb{Q}[\sin (2 \pi / p)]: \mathbb{Q}]=p-1$.
(Hint. For the first part, notice that $\zeta_{p} i$ has multiplicative order $4 p$, and its real part is $\sin (2 \pi / p)$.)
7. Suppose n are positive integers.
(a) Prove that there exists a prime p such that $\mathbb{Z} / n \mathbb{Z}$ is a quotient of $(\mathbb{Z} / p \mathbb{Z})^{\times}$.
(b) Suppose A is a finite abelian group. Prove that there exists a squarefree integer m such that A is a quotient of $(\mathbb{Z} / m \mathbb{Z})^{\times}$.
(c) Suppose A is a finite abelian group. Prove that there exists a finite Galois extension E / \mathbb{Q} such that

$$
\operatorname{Gal}(E / \mathbb{Q}) \simeq A
$$

(Hint. For part (a), use problem 2. For part (c), use part (b), and $\left.\operatorname{Gal}\left(\mathbb{Q}\left[\zeta_{m}\right] / \mathbb{Q}\right) \simeq(\mathbb{Z} / m \mathbb{Z})^{\times}.\right)$

