
1 Homework 4.

1. Suppose p > 4 is prime. Prove that f(x) := xp − 4x + 2 is not solvable by

radicals.

(Hint. Prove that f is irreducible, and it has at least two real zeros and

one non-real complex zero. Suppose E is a splitting field of f over Q, and

show that Gal(E/Q) cannot be solvable.)

2. Suppose F is a field of characteristic zero, f ∈ F [x] is irreducible, and E is

a splitting field of f over F . Suppose

f(x) = (x− α1) · · · (x− αn)

for αi’s in E. Let

∆f :=
∏

1≤i<j≤n

(αi − αj),

andDf := ∆2
f . LetGf,F be subgroup of the symmetric group of {α1, . . . , αn}

which is given by the Galois group Gal(E/F ).

(a) Prove that Df ∈ F .

(b) Prove that ∆f ∈ F if and only if Gf,F is a subgroup of the alternating

subgroup.

(Hint. Show that for every σ ∈ Gal(E/F ), σ(Df ) = Df . To show the

second part, argue that σ(∆f ) = sign(σ)∆f for every σ ∈ Gal(E/F ).)

(Remark. Df is called the discriminant of f , and it can be expressed

as polynomial in terms of the coefficients of f . Find the discriminant of

x3 − px + q. This can be very useful to find out what the Galois group of

an irreducible cubic polynomial is.)

3. Suppose F is a field, L := F (x1, . . . , xn) is the field of fractions of F [x1, . . . , xn].

For σ ∈ Sn and f ∈ L, let Tσ(f) = f(xσ−1(1), . . . , xσ−1(n)).

(a) Prove that T : Sn → AutF (L), (T (σ))(f) := Tσ(f) is an injective

group homomorphism.
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(b) Let K := Fix(T (Sn)). Elements of K are called symmetric functions.

Let

(t− x1) · · · (t− xn) = tn − s1t
n−1 + s2t

n−2 − · · ·+ (−1)nsn.

Let E := F (s1, . . . , sn). Prove that L is a splitting field of

tn − s1t
n−1 + · · ·+ (−1)nsn

over E. Deduce that [L : E] ≤ n!.

(c) Prove that K = E.

(d) For f ∈ L, let G(f) := {σ ∈ Sn | Tσ(f) = f}. Prove that

Fix(T (G(f))) = K[f ].

(e) Prove that G(f) ⊆ G(g) for f, g ∈ L if and only if there is θ ∈ K[t]

such that g = θ(f).

(Hint. For part (c), notice that [L : K] = |Sn|, E ⊆ K, and [L : E] ≤ n!.

For part (d), observe that Gal(L/K) can be identified with Sn, and using

the main Galois correspondence, Gal(L/K[f ]) gets identified with G(f).)

(Remark. This result is known as Lagrange’s Rational Function Theorem,

and Lagrange proved this result before Galois theory was developed. Along

the way, he proved some results about permutation groups, which later got

generalized to what we call Lagrange’s theorem in group theory!)

4. Suppose F is a field of characteristic zero and F is an algebraic closure of

F . Let

F ab := {α ∈ F | F [α]/F is Galois,Gal(F [α]/F ) is abelian}.

(a) Prove that F ab/F is Galois.

(b) Gal(F ab/F ) is abelian.

(c) If E/F is a finite Galois extension and Gal(E/F ) is abelian, then

E ⊆ F ab.
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(Hint. For part (a), argue that for every α ∈ F ab, F [α] is a splitting field

of mα,F over F . Deduce that for α, β ∈ F ab, F [α, β] is a splitting field of

mα,Fmβ,F over F . Hence, F [α, β]/F is a normal extension. Argue why the

restriction maps give us an embedding

Gal(F [α, β]/F ) → Gal(F [α]/F )×Gal(F [β]/F ).

Deduce that Gal(F [α, β]/F ) is an abelian group. Use this to obtain that

for every E ∈ Int(F [α, β]/F ), E/F is Galois and Gal(E/F ) is abelian.

Conclude that α ± β, αβ±1 are in F ab. Therefore, F ab is a subfield of F .

Argue that for every α ∈ F ab and every σ ∈ Gal(F/F ), σ(α) ∈ F [α] and

F [σ(α)] = F [α]. Deduce that F ab/F is a normal extension. Argue why the

restriction maps give us an embedding

Gal(F ab/F ) →
∏

α∈F ab

Gal(F [α]/F ),

and deduce that Gal(F ab/F ) is abelian. For the last part, use the primitive

element theorem.)

5. Prove that Q[cos(2π/n)]/Q is a Galois extension, and

Gal(Q[cos(2π/n)]/Q) ≃ (Z/nZ)×/±1.

(Hint. Argue why [Q[ζn] : Q[cos(2π/n)]] = 2. Notice that the complex

conjugation gives us an element τ ∈ Gal(Q[ζn]/Q) and Q[cos(2π/n)] ⊆
Fix(τ); deduce that Q[cos(2π/n)] = Fix(τ). Use the concrete isomorphism

Gal(Q[ζn]/Q) ≃ (Z/nZ)× and the main theorem of Galois theory to finish

the proof.)

6. Suppose F is a field of characteristic zero and there exists ζ ∈ F such that

the multiplicative order of ζ is n. Let F be an algebraic closure of F . For

a ∈ F , let n
√
a ∈ F be a zero of xn − a.

(a) Prove that

Gal(F [ n
√
a]/F ) ≃ ⟨a(F×)n⟩,

where the right hand side is a cyclic subgroup of F×/(F×)n.

(b) Prove that for every a1, a2 ∈ F×, we have F [ n
√
a1] = F [ n

√
a2] if and

only if ⟨a1(F×)n⟩ = ⟨a2(F×)n⟩.
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(Hint. For part (a), recall that Gal(F [ n
√
a]/F ) is cyclic. Assume it is

generated by σ0. Let ζ := σ0( n√a)
n√a

. Notice that

σd
0 = id ⇔ σd

0(
n
√
a) = n

√
a ⇔ ζd = 1

⇔ σ0(
n
√
a
d
) = n

√
a
d ⇔ n

√
a
d ∈ F×

⇔ ad ∈ (F×)n.

For part (b), (⇐) is easy. For (⇒), let

fai : Gal(F [ n
√
ai]/F ) → ⟨ζ⟩, fai(σ) :=

σ( n
√
ai)

n
√
ai

.

Notice that fai ’s are injective group homomorphisms, and the cyclic group

⟨ζ⟩ has a unique subgroup of order [F [ n
√
ai] : F ]. Hence

Im(fa1) = Im(fa2).

Suppose Gal(F [ n
√
ai]/F ) is generated by σ0; then

⟨
σ0( n

√
a1)

n
√
a1

⟩ = Im(fa1) = Im(fa2) = ⟨
σ0( n

√
a2)

n
√
a2

⟩.

Deduce that there exists an integer i such that(
σ0( n

√
a1)

n
√
a1

)i

=
σ0( n

√
a2)

n
√
a2

⇒ σ0

(
n
√
a1

i

n
√
a2

)
=

n
√
a1

i

n
√
a2

⇒
n
√
a1

i

n
√
a2

∈ F× ⇒ ai1(F
×)n = a2(F

×)n.

This means ⟨a2(F×)n⟩ ⊆ ⟨a1(F×)n⟩. By symmetry, claim follows. )

(Remark. This result is part of Kummer’s theory. Using Hilbert’s theorem

90, we get a bijection between the set of cyclic extension of F whose index

divides n and cyclic subgroups of F×/(F×)n. )

7. (Make sure that you know what this problem is and how you can solve

it, but you do not need to write and submit your solution) Suppose F is

a field of characteristic 0, F is an algebraic closure of F , and F× has an

element ζn with multiplicative order n. Let Intab,n(F/F ) be the set of E’s

in Int(F/F ) such that (1) E/F is a finite abelian extension, and (2) for all
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σ ∈ Gal(E/F ), we have σn = id. Let Subf(F
×/(F×)n) be the set of finite

subgroups of F×/(F×)n. Let

Λ : Subf(F
×/(F×)n) → Intab,n(F/F ), Λ(A) := F [ n

√
a | a(F×)n ∈ A],

and

∆ : Intab,n(F/F ) → Subf(F
×/(F×)n), ∆(E) := ((E×)n ∩ F×)/(F×)n.

Convince yourself that these are well-defined functions (besides ∆(E) being

finite, you show this as part of this problem), and

Λ(∆(E)) ⊆ E and A ⊆ ∆(Λ(A)).

(a) Suppose E ∈ Intab,n(F/F ). Prove that there exist positive integers

d1, . . . , dm and a1, . . . , am ∈ F× such that the following holds.

i. Gal(E/F ) ≃
∏m

i=1 Z/diZ and di|n. Suppose σ1, . . . , σm ∈ Gal(E/F )

such that |⟨σi⟩| = di and

Gal(E/F ) =
m⊕
i=1

⟨σi⟩.

ii. For 1 ≤ i ≤ m, let Fi := Fix(
⊕

j ̸=i⟨σj⟩). Then Gal(Fi/F ) is a

cyclic group of order di and generated by the restriction of σi.

iii. For 1 ≤ i ≤ m, Fi = F [ di
√
ai] and |⟨ai(F×)n⟩| = di.

iv. E = F [ d1
√
a1, . . . , dm

√
am], and

v. E = Λ(⟨an/d11 (F×)n, . . . , a
n/dm
m (F×)n⟩); and so Λ is surjective.

(b) For E ∈ Intab,n(F/F ), let

fE : Gal(E/F )×∆(E) → ⟨ζn⟩, fE(σ, a(F
×)n) :=

σ( n
√
a)

n
√
a

.

Convince yourself that fE is well-defined. Prove that fE is a group ho-

momorphism with respect to each component separately. (Sometimes,

we say bilinear.)

(c) Use part (a), and prove that if σ ∈ Gal(E/F ) is not identity, then for

some a, we have fE(σ, a) ̸= 1.
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(d) Prove that if a ∈ ∆(E) is not 1, then for some σ ∈ Gal(E/F ), we have

fE(σ, a) ̸= 1.

(e) By part (b), deduce that the following are group homomorphisms,

and use parts (c) and (d) to show these are injective group homomor-

phisms:

f̂G : Gal(E/F ) → Hom(∆(E), ⟨ζn⟩), (f̂G(σ))(a) = fE(σ, a)

and

f̂∆ : ∆(E) → Hom(Gal(E/F ), ⟨ζn⟩), (f̂∆(a))(σ) = fE(σ, a);

in particular, |∆(E)| < ∞.

(f) Prove that if A is a finite abelian group and na = 0 for every a ∈ A,

then Hom(A,Z/nZ) ≃ A. Use this to deduce that

Hom(Gal(E/F ), ⟨ζn⟩) ≃ Gal(E/F ) and Hom(∆(E), ⟨ζn⟩) ≃ ∆(E).

(g) Use parts (e) and (f) to show Gal(E/F ) ≃ ∆(E).

(h) Prove that Λ and ∆ are inverse of each other.

(Hint. For the last part, notice that

∆(E) ⊆ ∆(Λ(∆(E))) ⊆ ∆(E),

and

Λ(A) ⊆ Λ(∆(Λ(A))) ⊆ Λ(A).

Because Λ is surjective, by the above equalities deduce that Λ ◦ ∆ = id.

Next, to show ∆ ◦ Λ = id use proof by contradiction; this means for some

A, we have A ⊊ ∆(Λ(A)). Then there exists a non-trivial homomorphism

χ : ∆(Λ(A)) → ⟨ζn⟩ such that A ⊆ kerχ. Deduce that there exists a non-

trivial σ ∈ Gal(Λ(A)/F ) such that σ( n
√
a) = n

√
a for every a ∈ A. Argue

why this is a contradiction. )

(Remark. This is the Abelian case of the Kummer theory. The function

fE is called the Kummer pairing. Roughly, the class field theory gives

us similar results in the absence of roots of unity, and Langlands gave a

program for finding such a correspondence for non-abelian extensions.)
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