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INTEGRAL MORPHISMS ARE OPEN UNDER SOME CONDITIONS.

Suppose f : A < B is an integral embedding; so far we have proved that f* is
onto and closed, any fiber has dimension 0, and dim A = dim B. Next we proved
the Going-Down Theorem under some conditions. Today we show that under the

same conditions f* is also open.

Theorem 1. Suppose f : A < B is integral, B is an integral domain, and A is
integrally closed. Then f* : Spec(B) — Spec(A) is open.

Proof. We know that {0, },cp forms a basis for the open subsets of Spec(B)
where 0y, := {q € Spec(B)|b & q}. So it is enough to show f*(&},) is open for
any b € B. Take b € B, and let g(x) be the minimal polynomial of b over the field
of fractions of A; say g(z) = 2" + a,_12" ' + -+ 4+ ag. In the previous lecture,
we have proved that a; € A.

Claim. f*(0,) = /"y O,,; and so f*(6) is open.

Proof of Claim. (C) Suppose p € f*(0). Then there is q € Spec(B) such that
q° = p; and so p°® C q, which implies that \/p¢ C q. Therefore knowing that b ¢ g
implies that b & \/p°. By an earlier result, we get that b is not integral over p;
and so at least one of the a;’s is not in p, which means p € |JI—, .,

(2) Suppose p € U?;Ol; by a lemma that we proved in the previous lecture, if b
is integral over p, then all the non-leading coefficients of the minimal polynomial
of b over the field of fractions of A should be in p. So we deduce that b is not
integral over p. Thus by a proposition that was proved in the previous lecture,
b & \/p°. Hence there is q € Spec(B) such that p¢ C q and b € q. So we have
p C q° is a chain in Spec(A); therefore by the Going-Down Theorem, there is
q € Spec(B) such that ¢ C q and q° = p. Hence f*(q) =pand b qasqCq
and b & q; this means p € f*(0}). O
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GETTING NOETHERIAN CONDITION FOR SOME INTEGRAL CLOSURES.

As it has been pointed out earlier, one of the important examples that you
should have in mind is the integral closure 0} of Z in a number field k. So far
we have proved that f*: Spec(&y) — Spec(Z) is an open, closed, and onto map.
And dim 0, = dimZ = 1. Next we want to show they are Noetherian. We do it

in much more generality.

Theorem 2. Suppose f : A — B is integral, B is an integral domain, and A
is integrally closed. Let F be the field of fractions of A, and E be the field of
fractions of B. Suppose E/F is a finite separable extension. Then there are
€1,...,6n € E such that

(1) B C Ae; + - + Ae,.
In particular, if A is Noetherian, then B is Noetherian.

Before we prove the claimed inclusion (1) in above theorem, we show how this

implies the claimed Noetherian condition.

Proof of the Noetherian condition. If A is Noetherian, then any finitely generated
A-module is a Noetherian A-module. Hence Y " | Ae; is a Noetherian A-module.
This implies that any of its A-submodules is Noetherian; and so B is a Noetherian

A-module. Therefore B is a Noetherian B-module, which means B is Noetherian.
O

To show the above theorem, first we review some basic properties of finite
separable field extensions and non-degenerate bilinear forms.
Recall from linear algebra. Suppose V' is a finite dimensional vector space
over a field F. Let B := {vy,...,v,} be an F-basis of V. For v € V, we let
C1

) = | 1 | ifv=>"" ¢u; and we let (v

» be the transpose of |v)y. For
Cn

any F-linear map 7' : V — V', we have a matrix [T]|g € M, (F) such that for any

v € ‘7 ‘T(Z')>\B = [T]xl; l,‘>x1;.

Lemma 3. Suppose E/F is finite separable field extension. Let B :={e1,...,e,}
be an F-basis of E, and l, : E — E,l.(¢/) := e€'. Let {o1,...,0,} be the set of
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F-embeddings of E into an algebraic closure F of F. Then for any e € E, [l.]»

is similar to the diagonal matriz diag(cy(e), ..., on(e)) over F.

Proof. Since E/F is a finite separable extension, £ = Fla] for some a € E.
Let mq p(z) be the minimal polynomial of o over F. So [E : F] = degmq,r.
Since E/F is a separable extension, m, p(z) has n := [E : F] distinct zeros;
say mar(z) = [[1_,(z — o;) for a;. Then for any o € Embedr(E, F), o(a) €
{aq,...,a,}; and for any i, there is a unique F-embedding o; of E into F' that

sends « to «;. Hence after rearranging we can and will assume that o;(a) = «;.
We have

And following these isomorphisms we have that
a®@l—=r+a®l—x+af
=@+ (r—a1),..., e+ (@ —ay) = (,...,qp)
=(o1(),...,on()).

Since the above isomorphism is an F-algebra isomorphism and E = F[a], we get

an F-algebra isomorphism
0:E@pF — @F,H(e ®1) = (o1(e),...,0u(€)),

i=1

for any e € E. Therefore we get the following commuting diagram
E— s FExyF 25 F"
lle llec@idf lde
Ee s E®sF 25 F"

where d, : ' — F ", de(zq,...,2,) := (01(€)21,...,0,(€e)x,). Notice that since
{e1,...,e,} is an F-basis of E, {e; ®1,...,e, ® 1} is an F-basis of E ®p F and
B = {f(c1),...,0(e,)} is an F-basis of F". As 6 is an F-algebra isomorphism,
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by the above diagram [l.]s = [dc]g. On the other hand, in the standard basis B’
of F" we have [d.]w = diag(a1(e),...,0,(e)); and claim follows. O

Corollary 4. Suppose E/F is a finite separable extension. Let

Trgp(e) = Y ole),

o€Embed g (E,F)

and
Ng/r(e) := I <.
o€Embedr (E,F)
Letl. : E — E,l.(€¢') == e€e’. Then Trg p(e) = Tr(l,) and Ng/p(e) = detl,; in
particular, Trp/p(E) C F and Ng,p(E) C F.

Note. Suppose B := {ey,...,e,} is an F-basis of a vector space V; and
f:V xV — Fis a bilinear map. Then [f]y := [f(e;, ¢;)], and for any v,w € V,

we have f(v,w) = (v]s[f]s|w)s.
Lemma 5. In the above setting, f is non-degenerate if and only if det[f]s # 0.

Proof. (=) suppose det|[f]s = 0; then there is w # 0 such that [f]gs|w)s = 0;
and so for any v € V| f(v,w) = 0 and w # 0, which contradicts the assumption
that f is non-degenerate.

(<) suppose f is degenerate; so there is w # 0 such that f(V,w) = 0; this
implies that (v|g[f]s|w)s = 0 for any v € V. Letting v = ¢;, we deduce that the
i-th component of [f]ys|w)y is zero. Therefore [f]g|w)s = 0. As det|f]s # 0, we

deduce that w = 0, which is a contradiction. [l

Lemma 6. Suppose V' is a finite dimensional F'-vector space, and f : V xV — F
is a non-degenerate F-bilinear form; then Ty : V- — V* (Tf(v))(w) := f(v,w) is

an F-module isomorphism, where V* := Homp(V, F).

Proof. Since f is linear in the second factor, T¢(v) € V*; and since f is linear
in the first factor, v +— Ty(v) is a linear map. If v € ker7y, then for any
w €V, (Ty(v))(w) = 0, which implies that f(v,V) = 0; and so v = 0 as f
is non-degenerate. Hence T is an injective F-linear map. On the other hand,
V* = Homp(P;_ | F,F) ~ @) Homp(F,F) ~ F" ~ V. Hence T is also

surjective as V' and V* have equal dimensions. ]
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Lemma 7. Suppose {v1,...,v,} is an F-basis of V, and f : V xV — F is a
non-degenerate bilinear map. Then there is a dual basis {w1, ..., w,} with respect

to f; that means it is a basis and

1 ifi=j

0 otherwise.

f(’l/'i, ’IU']-) =

Proof. Let {v},...,v:} be the dual basis of V*; that means v} : V — F is
: : L ife=j : :
the F-linear extension of v} (v;) := By the previous lemma, T} is
0 otherwise.

surjective; and so there are w;’s in V' such that Ty (w;) = v}; and claim follows. [

Lemma 8. Suppose E/F is a finite separable field extension. Then f(e,e') =

Trp/r(ee’) is a non-degenerate symmetric bilinear form on E.

Proof. Suppose {ey,...,e,} is an F-basis of E. Then we have to show
det[Trg/p(eie;)] # 0.

We notice that Trg r(eie;) = > p_; ox(eie;) = > p_, ox(ei)o(e;) where Embedr(E, F).
Let X := [ox(e;)] (the ik-th entry is ox(e;)). Then by the previous equality we
have

[Trp/r(eie;)] = XX'; and so det[Trg,r(e;e;)] = det X2
Hence it is enough to show rows of X are linearly independent. This we have
already pointed out in the proof of Lemma 3: {(e;),...,0(e,)} is an F-basis of
. O

We will prove Theorem 3 in the next lecture.



