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Basics of primary ideals

In the previous lecture we were proving:

Lemma 1. If m ∈ Max(A) and
√
q = m, then q is m-primary.

Proof. Since
√
q =


p∈V (q) p = m, we have that q ⊆ p ⇒ m ⊆ p. Since m is a

maximal ideal, we have V (q) = {m}.
Suppose x ∕∈ q and xy ∈ q. Consider

(q : x) := {a ∈ A| ax ∈ q}.

Then one can check that (q : x) is an ideal of A, q ⊆ (q : x) (alternatively

(q : x)|q), and y ∈ (q : x). Hence V (q : x) ⊆ V (q) = {m}; and so either

(q : x) = A or V ((q : x)) = {m}. Since x ∕∈ q, 1 ∕∈ (q : x). Thus V ((q : x)) = {m},
which implies that y ∈ (q : x) ⊆ m. This implies that q is primary. □

As it has been mentioned earlier, primary ideals are supposed to play the role

of powers of primes. The next lemma shows that when A is a PID these two

concepts are equivalent.

Lemma 2. Suppose A is a PID. Then q is a non-zero primary ideal of A if and

only if there is a prime element p of A and positive integer n such that q = 〈pn〉.

Proof. (⇒) Suppose p :=
√
q. So p ∈ Spec(A) = {0} ∪ Max(A). Notice that

p = 0 if and only if q. If p ∕= 0, then there is an irreducible element p ∈ A such

that p = 〈p〉; and in a PID an element is irreducible if and only if it is prime.

Suppose q = 〈a〉. Since p is the smallest prime divisor of q, we have that, if ℓ is

prime in A and ℓ|a, then p|ℓ; this means p is the only prime factor of a. Hence

there is positive integer n such that 〈a〉 = 〈pn〉.
(⇐)


〈pn〉 = 〈p〉 ∈ Max(A). Hence by the previous lemma, 〈pn〉 is primary.

□
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As we have seen it the proof of Lemma 1, it is instrumental to understand

(q : x) to have a better understanding of q.

Lemma 3. Suppose q is p-primary. Then

(q : x) =






A if x ∈ q,

q if x ∕∈ p,

p-primary if x ∕∈ q.

Proof. If x ∈ q, then it is clear that (q : x) = A.

Suppose x ∕ inp; then y ∈ (q : x) implies that xy ∈ q. Since q is primary, xy ∈ q

and x ∕∈ q imply that y ∈ √
q = p; this is a contradiction. Therefore (q : x) ⊆ q.

And for any ideal q and any element x, we have (q : x) ⊇ q.

Suppose x ∕∈ q. First we show that


(q : x) = p. Suppose y ∈


(q : x). Then

for some positive integer n, ynx ∈ q. Since q is a primary ideal, x ∕ q and xyn ∈ q

imply that, for some positive integer m, (yn)m ∈ q. This means y ∈ √
q = p.

Hence


(q : x) ⊆ √
q. We always have


(q : x) ⊇ √

q; and so


(q : x) = p.

Suppose yz ∈ (q : x) and y ∕∈


(q : x) = p. Hence (xz)y ∈ q and y ∕∈ √
q. As

q is primary, we can deduce that xz ∈ q; this means z ∈ (q : x). Therefore (q : x)

is p-primary. □

Primary decomposition

Definition 4. An ideal a is called decomposable if there are finitely many primary

ideals qi such that a =
n

i=1 qi.

A decomposition
n

i=1 qi is called reduced if

(1) for any i, qi ∕⊇


j ∕=i qj,

(2)
√
qi ∕=

√
qj for i ∕= j.

Lemma 5. (1) Suppose q and q′ are p-primary; then q ∩ q′ is p-primary.

(2) A decomposable ideal has a reduced decomposition.

Proof. (1) As q ∩ q′ ⊆ q,
√
q ∩ q′ ⊆ √

q = p. If x ∈ p, then there are positive

integers n, n′ such that xn ∈ q and xn′ ∈ q′. Hence for any m ≥ max(n, n′),

xm ∈ q ∩ q′; and so x ∈
√
q ∩ q′. Thus

√
q ∩ q′ = p. Suppose xy ∈ q ∩ q′ and

x ∕∈
√
q ∩ q′ = p. xy ∈ q and x ∕∈ p =

√
q imply that y ∈ q; and similarly xy ∈ q′

and x ∕∈ p =
√
q′ imply that y ∈ q′. Thus y ∈ q ∩ q′; and claim follows.
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(2) We start with a decomposition a =
n

i=1 qi. Using part (1), we can make

sure that
√
q
i
∕= √

q
j
if i ∕= j. And then we can drop any unnecessary qi if needed,

to end up getting a reduced decomposition. □

How much is a primary decomposition unique? In your HW assignment you

will see examples of ideals with at least two primary decompositions. That said

some parameters of a reduced primary decomposition of an ideal a just depends

on a.

Theorem 6. Suppose
n

i=1 qi is a reduced primary decomposition of a, and pi :=√
qi. Then

{p1, . . . , pn} = Spec(A) ∩ {


(a : x)| x ∈ A};

in particular {p1, . . . , pn} just depends on a and it is independent of the choice of

a reduced primary decomposition.

If a is decomposable and
n

i=1 qi is a reduced primary decomposition, then

{√q1, . . . ,
√
qn} is called the set of primes associated with a; and we write

Ass(a) := {√q1, . . . ,
√
qn}.

Proof. We make notice of two things:

(


i∈I

bi : x) =


i∈I

(bi : x) and


n

i=1

bi =
n

i=1


bi.

Here is their proof:

y ∈ (


i∈I

bi : x) ⇔ xy ∈


i∈I

bi ⇔ ∀i ∈ I, xy ∈ bi ⇔ ∀i ∈ I, y ∈ (bi : x) ⇔ y ∈


i∈I

bi.

Since
n

i=1 bi ⊆ bi for any i,
n

i=1bi ⊆
n

i=1

√
bi; and

y ∈
n

i=1


bi ⇒ ∀i, y ∈


bi ⇒ ∀i, ∃ni ∈ Z+, yni ∈ bi ⇒ ymaxi(ni) ∈

n

i=1

bi ⇒ y ∈


n

i=1

bi.

Hence

(1)


(a : x) =

(
n

i=1

qi : x) =
n

i=1


(qi : x).
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By the Lemma 3,


(qi : x) = A if x ∈ qi and


(qi : x) = pi if x ∕∈ qi. Hence by

(1) we have 
(a : x) =



x ∕∈qi

pi

with the understanding that if x ∈
n

i=1 qi, then the above intersection is A.

Since qj’s give us a reduced primary decomposition, there is xi ∈


j ∕=i qj \ qi.

Then, by (1),


(a : xi) = pi. This means the RHS is a subset of the LHS in the

statement of Theorem.

Suppose


(a : x) =: p is a prime ideal. Then by (1), p =


x ∕∈qi pi. Since p

is prime,


x ∕∈qi pi ⊆ p implies that for some i0, xi0 ∕∈ qi0 and pi0 ⊆ p. Since

p ⊆


xi ∕∈qi pi ⊆ pi0 , we have p ⊆ pi0 . Altogether, we have p = pi0 for some i0.

This implies that the RHS is a subset of the LHS; and claim follows. □

Proposition 7. Suppose a is decomposable. Then

(1) Ass(a) ⊆ V (a).

(2) For any p ∈ V (a), there is p′ ∈ Ass(a) such that p′ ⊆ p.

(3) The set of minimal elements of Ass(a) with respect to inclusion is the

same as the set of minimal elements of V (a) with respect to inclusion.

We deduce that, if a is decomposable, then V (a) has only finitely many min-

imal elements. We will prove later that if A is Noetherian, then any ideal is

decomposable. This is similar to how we used a chain condition to prove that

any element can be written as a product of irreducible elements in a Noetherian

integral domian.

Proof. (1) Suppose
n

i=1 qi is a reduced primary decomposition of a and pi :=
√
qi.

Then a ⊆ qi ⊆ pi for any i; and so pi ∈ V (a).

(2) For any p ∈ V (a), we have
n

i=1 qi ⊆ p. Hence
n

i=1 qi ⊆ √
p which

implies
n

i=1

pi =
n

i=1

√
qi ⊆ p.

Since p is prime, we have that pi ⊆ p for some i.

(3) Suppose p is a minimal element of V (a). By (2), there is p′ ∈ Ass(a) such

that p′ ⊆ p. As Ass(a) ⊆ V (a) and p is minimal in V (a), p′ ⊆ p implies that

p = p′. Since p is minimal in V (a), Ass(a) ⊆ V (a), and pfr ∈ Ass(A), p is

minimal in Ass(A). Hence
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minimal in V (a) implies minimal in Ass(a).

Suppose p is minimal in Ass(a). And suppose to the contrary that p is not

minimal in V (a). Then there is p ∈ V (a) such that p ⊊ p. By part (2), there is

p′ ∈ Ass(a) such that p′ ⊆ p. Thus

p′ ⊆ p ⊊ p;

but p′, p ∈ Ass(a) and p′ ⊊ p contradict that p is minimal in Ass(a). Therefore

minimal in V (a) implies minimal in V (a);

and claim follows. □

Proposition 8. Suppose a is decomposable. Then


p∈Ass(a)

p = {x ∈ A| (a : x) ∕= a}.

Notice that {x ∈ A| (0 : x) ∕= 0} = D(A) is the set of zero-divisors of A. And

so the above proposition implies D(A) =


p∈Ass(0) p if 0 is decomposable.

Proof. Suppose
n

i=1 qi is a reduced primary decomposition of a. Then for any x,

(a : x) =
n

i=1(qi : x). So if (a : x) ∕= a, then for some i we have that (qi : x) ∕= qi.

Therefore, by Lemma 3, x ∈ pi. Hence the RHS is a subset of the LHS.

Suppose x ∈ pi for some i. Then by Theorem 6, there is y ∈ A such that

pi =


(a : y). So x ∈


(a : y); hence for some positive integer n, xn ∈ (a : y),

which implies that xny ∈ a.

Now suppose to the contrary that (a : x) = a. In this case, we claim that

y ∈ a. To show this suppose i is the smallest non-negative integer such that

xiy ∈ a. If i = 0, we get the claim. If i > 0, then x(xi−1y) ∈ a implies that

xi−1y ∈ (a : x) = a; and this contradicts the minimality of i. Hence y ∈ a, which

implies that (a : y) = A; but this contradicts that


(a : y) is prime. Therefore

(a : x) ∕= a, which means the LHR is a subset of the RHS. □


