MATH200C, LECTURE 8

GOLSEFIDY

BASICS OF PRIMARY IDEALS

In the previous lecture we were proving:

Lemma 1. If $\mathfrak{m} \in Max(A)$ and $\sqrt{\mathfrak{q}} = \mathfrak{m}$, then \mathfrak{q} is \mathfrak{m} -primary.

Proof. Since $\sqrt{\mathfrak{q}} = \bigcap_{\mathfrak{p} \in V(\mathfrak{q})} \mathfrak{p} = \mathfrak{m}$, we have that $\mathfrak{q} \subseteq \mathfrak{p} \Rightarrow \mathfrak{m} \subseteq \mathfrak{p}$. Since \mathfrak{m} is a maximal ideal, we have $V(\mathfrak{q}) = {\mathfrak{m}}$.

Suppose $x \notin \mathfrak{q}$ and $xy \in \mathfrak{q}$. Consider

$$(\mathbf{q}:x) := \{a \in A \mid ax \in \mathbf{q}\}.$$

Then one can check that $(\mathfrak{q} : x)$ is an ideal of $A, \mathfrak{q} \subseteq (\mathfrak{q} : x)$ (alternatively $(\mathfrak{q} : x)|\mathfrak{q})$, and $y \in (\mathfrak{q} : x)$. Hence $V(\mathfrak{q} : x) \subseteq V(\mathfrak{q}) = {\mathfrak{m}}$; and so either $(\mathfrak{q} : x) = A$ or $V((\mathfrak{q} : x)) = {\mathfrak{m}}$. Since $x \notin \mathfrak{q}, 1 \notin (\mathfrak{q} : x)$. Thus $V((\mathfrak{q} : x)) = {\mathfrak{m}}$, which implies that $y \in (\mathfrak{q} : x) \subseteq \mathfrak{m}$. This implies that \mathfrak{q} is primary. \Box

As it has been mentioned earlier, primary ideals are supposed to play the role of powers of primes. The next lemma shows that when A is a PID these two concepts are equivalent.

Lemma 2. Suppose A is a PID. Then \mathfrak{q} is a non-zero primary ideal of A if and only if there is a prime element p of A and positive integer n such that $\mathfrak{q} = \langle p^n \rangle$.

Proof. (\Rightarrow) Suppose $\mathfrak{p} := \sqrt{\mathfrak{q}}$. So $\mathfrak{p} \in \operatorname{Spec}(A) = \{0\} \cup \operatorname{Max}(A)$. Notice that $\mathfrak{p} = 0$ if and only if \mathfrak{q} . If $\mathfrak{p} \neq 0$, then there is an irreducible element $p \in A$ such that $\mathfrak{p} = \langle p \rangle$; and in a PID an element is irreducible if and only if it is prime. Suppose $\mathfrak{q} = \langle a \rangle$. Since \mathfrak{p} is the smallest prime divisor of \mathfrak{q} , we have that, if ℓ is prime in A and $\ell | a$, then $p | \ell$; this means p is the only prime factor of a. Hence there is positive integer n such that $\langle a \rangle = \langle p^n \rangle$.

 $(\Leftarrow) \sqrt{\langle p^n \rangle} = \langle p \rangle \in \text{Max}(A)$. Hence by the previous lemma, $\langle p^n \rangle$ is primary.

GOLSEFIDY

As we have seen it the proof of Lemma 1, it is instrumental to understand (q:x) to have a better understanding of q.

Lemma 3. Suppose \mathfrak{q} is \mathfrak{p} -primary. Then

$$(\mathfrak{q}:x) = \begin{cases} A & \text{if } x \in \mathfrak{q}, \\ \mathfrak{q} & \text{if } x \notin \mathfrak{p}, \\ \mathfrak{p}\text{-primary} & \text{if } x \notin \mathfrak{q}. \end{cases}$$

Proof. If $x \in \mathfrak{q}$, then it is clear that $(\mathfrak{q} : x) = A$.

Suppose $x \not in\mathfrak{p}$; then $y \in (\mathfrak{q} : x)$ implies that $xy \in \mathfrak{q}$. Since \mathfrak{q} is primary, $xy \in \mathfrak{q}$ and $x \notin \mathfrak{q}$ imply that $y \in \sqrt{\mathfrak{q}} = \mathfrak{p}$; this is a contradiction. Therefore $(\mathfrak{q} : x) \subseteq \mathfrak{q}$. And for any ideal \mathfrak{q} and any element x, we have $(\mathfrak{q} : x) \supseteq \mathfrak{q}$.

Suppose $x \notin \mathfrak{q}$. First we show that $\sqrt{(\mathfrak{q}:x)} = \mathfrak{p}$. Suppose $y \in \sqrt{(\mathfrak{q}:x)}$. Then for some positive integer $n, y^n x \in \mathfrak{q}$. Since \mathfrak{q} is a primary ideal, $x \not \mathfrak{q}$ and $xy^n \in \mathfrak{q}$ imply that, for some positive integer $m, (y^n)^m \in \mathfrak{q}$. This means $y \in \sqrt{\mathfrak{q}} = \mathfrak{p}$. Hence $\sqrt{(\mathfrak{q}:x)} \subseteq \sqrt{\mathfrak{q}}$. We always have $\sqrt{(\mathfrak{q}:x)} \supseteq \sqrt{\mathfrak{q}}$; and so $\sqrt{(\mathfrak{q}:x)} = \mathfrak{p}$.

Suppose $yz \in (\mathfrak{q}:x)$ and $y \notin \sqrt{(\mathfrak{q}:x)} = \mathfrak{p}$. Hence $(xz)y \in \mathfrak{q}$ and $y \notin \sqrt{\mathfrak{q}}$. As \mathfrak{q} is primary, we can deduce that $xz \in \mathfrak{q}$; this means $z \in (\mathfrak{q}:x)$. Therefore $(\mathfrak{q}:x)$ is \mathfrak{p} -primary.

PRIMARY DECOMPOSITION

Definition 4. An ideal \mathfrak{a} is called decomposable if there are finitely many primary ideals \mathfrak{q}_i such that $\mathfrak{a} = \bigcap_{i=1}^n \mathfrak{q}_i$.

A decomposition $\bigcap_{i=1}^{n} \mathfrak{q}_i$ is called reduced if

- (1) for any $i, q_i \not\supseteq \bigcap_{j \neq i} q_j$,
- (2) $\sqrt{\mathfrak{q}_i} \neq \sqrt{\mathfrak{q}_j}$ for $i \neq j$.

Lemma 5. (1) Suppose \mathfrak{q} and \mathfrak{q}' are \mathfrak{p} -primary; then $\mathfrak{q} \cap \mathfrak{q}'$ is \mathfrak{p} -primary. (2) A decomposable ideal has a reduced decomposition.

Proof. (1) As $\mathbf{q} \cap \mathbf{q}' \subseteq \mathbf{q}$, $\sqrt{\mathbf{q} \cap \mathbf{q}'} \subseteq \sqrt{\mathbf{q}} = \mathbf{p}$. If $x \in \mathbf{p}$, then there are positive integers n, n' such that $x^n \in \mathbf{q}$ and $x^{n'} \in \mathbf{q}'$. Hence for any $m \geq \max(n, n')$, $x^m \in \mathbf{q} \cap \mathbf{q}'$; and so $x \in \sqrt{\mathbf{q} \cap \mathbf{q}'}$. Thus $\sqrt{\mathbf{q} \cap \mathbf{q}'} = \mathbf{p}$. Suppose $xy \in \mathbf{q} \cap \mathbf{q}'$ and $x \notin \sqrt{\mathbf{q} \cap \mathbf{q}'} = \mathbf{p}$. $xy \in \mathbf{q}$ and $x \notin \mathbf{p} = \sqrt{\mathbf{q}}$ imply that $y \in \mathbf{q}$; and similarly $xy \in \mathbf{q}'$ and $x \notin \mathbf{p} = \sqrt{\mathbf{q}'}$ imply that $y \in \mathbf{q} \cap \mathbf{q}'$; and claim follows.

 $\mathbf{2}$

(2) We start with a decomposition $\mathfrak{a} = \bigcap_{i=1}^{n} \mathfrak{q}_i$. Using part (1), we can make sure that $\sqrt{\mathfrak{q}}_i \neq \sqrt{\mathfrak{q}}_j$ if $i \neq j$. And then we can drop any unnecessary \mathfrak{q}_i if needed, to end up getting a reduced decomposition.

How much is a primary decomposition unique? In your HW assignment you will see examples of ideals with at least two primary decompositions. That said some parameters of a reduced primary decomposition of an ideal \mathfrak{a} just depends on \mathfrak{a} .

Theorem 6. Suppose $\bigcap_{i=1}^{n} \mathfrak{q}_i$ is a reduced primary decomposition of \mathfrak{a} , and $\mathfrak{p}_i := \sqrt{\mathfrak{q}_i}$. Then

$$\{\mathfrak{p}_1,\ldots,\mathfrak{p}_n\} = \operatorname{Spec}(A) \cap \{\sqrt{(\mathfrak{a}:x)} | x \in A\};$$

in particular $\{\mathfrak{p}_1, \ldots, \mathfrak{p}_n\}$ just depends on \mathfrak{a} and it is independent of the choice of a reduced primary decomposition.

If \mathfrak{a} is decomposable and $\bigcap_{i=1}^{n} \mathfrak{q}_i$ is a reduced primary decomposition, then $\{\sqrt{\mathfrak{q}_1}, \ldots, \sqrt{\mathfrak{q}_n}\}$ is called the set of primes associated with \mathfrak{a} ; and we write $\operatorname{Ass}(\mathfrak{a}) := \{\sqrt{\mathfrak{q}_1}, \ldots, \sqrt{\mathfrak{q}_n}\}.$

Proof. We make notice of two things:

$$(\bigcap_{i\in I}\mathfrak{b}_i:x) = \bigcap_{i\in I}(\mathfrak{b}_i:x) \text{ and } \sqrt{\bigcap_{i=1}^n \mathfrak{b}_i} = \bigcap_{i=1}^n \sqrt{\mathfrak{b}_i}.$$

Here is their proof:

$$y \in (\bigcap_{i \in I} \mathfrak{b}_i : x) \Leftrightarrow xy \in \bigcap_{i \in I} \mathfrak{b}_i \Leftrightarrow \forall i \in I, xy \in \mathfrak{b}_i \Leftrightarrow \forall i \in I, y \in (\mathfrak{b}_i : x) \Leftrightarrow y \in \bigcap_{i \in I} \mathfrak{b}_i.$$

Since $\bigcap_{i=1}^{n} \mathfrak{b}_{i} \subseteq \mathfrak{b}_{i}$ for any $i, \sqrt{\bigcap_{i=1}^{n}} \mathfrak{b}_{i} \subseteq \bigcap_{i=1}^{n} \sqrt{\mathfrak{b}_{i}}$; and

$$y \in \bigcap_{i=1}^n \sqrt{\mathfrak{b}_i} \Rightarrow \forall i, y \in \sqrt{\mathfrak{b}_i} \Rightarrow \forall i, \exists n_i \in \mathbb{Z}^+, y^{n_i} \in \mathfrak{b}_i \Rightarrow y^{\max_i(n_i)} \in \bigcap_{i=1}^n \mathfrak{b}_i \Rightarrow y \in \sqrt{\bigcap_{i=1}^n \mathfrak{b}_i}$$

Hence

(1)
$$\sqrt{(\mathfrak{a}:x)} = \sqrt{\left(\bigcap_{i=1}^{n} \mathfrak{q}_{i}:x\right)} = \bigcap_{i=1}^{n} \sqrt{(\mathfrak{q}_{i}:x)}.$$

GOLSEFIDY

By the Lemma 3, $\sqrt{(\mathfrak{q}_i:x)} = A$ if $x \in \mathfrak{q}_i$ and $\sqrt{(\mathfrak{q}_i:x)} = \mathfrak{p}_i$ if $x \notin \mathfrak{q}_i$. Hence by (1) we have

$$\sqrt{(\mathfrak{a}:x)} = \bigcap_{x \notin \mathfrak{q}_i} \mathfrak{p}_i$$

with the understanding that if $x \in \bigcap_{i=1}^{n} \mathfrak{q}_i$, then the above intersection is A. Since \mathfrak{q}_j 's give us a reduced primary decomposition, there is $x_i \in \bigcap_{j \neq i} \mathfrak{q}_j \setminus \mathfrak{q}_i$. Then, by (1), $\sqrt{(\mathfrak{a}: x_i)} = \mathfrak{p}_i$. This means the RHS is a subset of the LHS in the statement of Theorem.

Suppose $\sqrt{(\mathfrak{a}:x)} =: \mathfrak{p}$ is a prime ideal. Then by (1), $\mathfrak{p} = \bigcap_{x \notin \mathfrak{q}_i} \mathfrak{p}_i$. Since \mathfrak{p} is prime, $\bigcap_{x \notin \mathfrak{q}_i} \mathfrak{p}_i \subseteq \mathfrak{p}$ implies that for some $i_0, x_{i_0} \notin \mathfrak{q}_{i_0}$ and $\mathfrak{p}_{i_0} \subseteq \mathfrak{p}$. Since $\mathfrak{p} \subseteq \bigcap_{x_i \notin \mathfrak{q}_i} \mathfrak{p}_i \subseteq \mathfrak{p}_{i_0}$, we have $\mathfrak{p} \subseteq \mathfrak{p}_{i_0}$. Altogether, we have $\mathfrak{p} = \mathfrak{p}_{i_0}$ for some i_0 . This implies that the RHS is a subset of the LHS; and claim follows.

Proposition 7. Suppose a is decomposable. Then

- (1) $\operatorname{Ass}(\mathfrak{a}) \subseteq V(\mathfrak{a}).$
- (2) For any $\mathfrak{p} \in V(\mathfrak{a})$, there is $\mathfrak{p}' \in Ass(\mathfrak{a})$ such that $\mathfrak{p}' \subseteq \mathfrak{p}$.
- (3) The set of minimal elements of $Ass(\mathfrak{a})$ with respect to inclusion is the same as the set of minimal elements of $V(\mathfrak{a})$ with respect to inclusion.

We deduce that, if \mathfrak{a} is decomposable, then $V(\mathfrak{a})$ has only finitely many minimal elements. We will prove later that if A is Noetherian, then any ideal is decomposable. This is similar to how we used a chain condition to prove that any element can be written as a product of irreducible elements in a Noetherian integral domian.

Proof. (1) Suppose $\bigcap_{i=1}^{n} \mathfrak{q}_i$ is a reduced primary decomposition of \mathfrak{a} and $\mathfrak{p}_i := \sqrt{\mathfrak{q}_i}$. Then $\mathfrak{a} \subseteq \mathfrak{q}_i \subseteq \mathfrak{p}_i$ for any i; and so $\mathfrak{p}_i \in V(\mathfrak{a})$.

(2) For any $\mathfrak{p} \in V(\mathfrak{a})$, we have $\bigcap_{i=1}^{n} \mathfrak{q}_i \subseteq \mathfrak{p}$. Hence $\sqrt{\bigcap_{i=1}^{n} \mathfrak{q}_i} \subseteq \sqrt{\mathfrak{p}}$ which implies

$$\bigcap_{i=1}^n \mathfrak{p}_i = \bigcap_{i=1}^n \sqrt{\mathfrak{q}_i} \subseteq \mathfrak{p}.$$

Since \mathfrak{p} is prime, we have that $\mathfrak{p}_i \subseteq \mathfrak{p}$ for some *i*.

(3) Suppose \mathfrak{p} is a minimal element of $V(\mathfrak{a})$. By (2), there is $\mathfrak{p}' \in \operatorname{Ass}(\mathfrak{a})$ such that $\mathfrak{p}' \subseteq \mathfrak{p}$. As $\operatorname{Ass}(\mathfrak{a}) \subseteq V(\mathfrak{a})$ and \mathfrak{p} is minimal in $V(\mathfrak{a})$, $\mathfrak{p}' \subseteq \mathfrak{p}$ implies that $\mathfrak{p} = \mathfrak{p}'$. Since \mathfrak{p} is minimal in $V(\mathfrak{a})$, $\operatorname{Ass}(\mathfrak{a}) \subseteq V(\mathfrak{a})$, and $pfr \in \operatorname{Ass}(A)$, \mathfrak{p} is minimal in $\operatorname{Ass}(A)$. Hence

4

minimal in $V(\mathfrak{a})$ implies minimal in Ass (\mathfrak{a}) .

Suppose \mathfrak{p} is minimal in $\operatorname{Ass}(\mathfrak{a})$. And suppose to the contrary that \mathfrak{p} is not minimal in $V(\mathfrak{a})$. Then there is $\overline{\mathfrak{p}} \in V(\mathfrak{a})$ such that $\overline{\mathfrak{p}} \subsetneq \mathfrak{p}$. By part (2), there is $\mathfrak{p}' \in \operatorname{Ass}(\mathfrak{a})$ such that $\mathfrak{p}' \subseteq \overline{\mathfrak{p}}$. Thus

$$\mathfrak{p}' \subseteq \overline{\mathfrak{p}} \subsetneq \mathfrak{p};$$

but $\mathfrak{p}', \mathfrak{p} \in \operatorname{Ass}(\mathfrak{a})$ and $\mathfrak{p}' \subsetneq \mathfrak{p}$ contradict that \mathfrak{p} is minimal in $\operatorname{Ass}(\mathfrak{a})$. Therefore

minimal in $V(\mathfrak{a})$ implies minimal in $V(\mathfrak{a})$;

and claim follows.

Proposition 8. Suppose \mathfrak{a} is decomposable. Then

$$\bigcup_{\mathfrak{p}\in \mathrm{Ass}(\mathfrak{a})}\mathfrak{p} = \{x \in A | (\mathfrak{a}:x) \neq \mathfrak{a}\}.$$

Notice that $\{x \in A | (0 : x) \neq 0\} = D(A)$ is the set of zero-divisors of A. And so the above proposition implies $D(A) = \bigcup_{\mathfrak{p} \in Ass(0)} \mathfrak{p}$ if 0 is decomposable.

Proof. Suppose $\bigcap_{i=1}^{n} \mathfrak{q}_i$ is a reduced primary decomposition of \mathfrak{a} . Then for any x, $(\mathfrak{a}:x) = \bigcap_{i=1}^{n} (\mathfrak{q}_i:x)$. So if $(\mathfrak{a}:x) \neq \mathfrak{a}$, then for some i we have that $(\mathfrak{q}_i:x) \neq \mathfrak{q}_i$. Therefore, by Lemma 3, $x \in \mathfrak{p}_i$. Hence the RHS is a subset of the LHS.

Suppose $x \in \mathfrak{p}_i$ for some *i*. Then by Theorem 6, there is $y \in A$ such that $\mathfrak{p}_i = \sqrt{(\mathfrak{a}: y)}$. So $x \in \sqrt{(\mathfrak{a}: y)}$; hence for some positive integer $n, x^n \in (\mathfrak{a}: y)$, which implies that $x^n y \in \mathfrak{a}$.

Now suppose to the contrary that $(\mathfrak{a} : x) = \mathfrak{a}$. In this case, we claim that $y \in \mathfrak{a}$. To show this suppose *i* is the smallest non-negative integer such that $x^i y \in \mathfrak{a}$. If i = 0, we get the claim. If i > 0, then $x(x^{i-1}y) \in \mathfrak{a}$ implies that $x^{i-1}y \in (\mathfrak{a} : x) = \mathfrak{a}$; and this contradicts the minimality of *i*. Hence $y \in \mathfrak{a}$, which implies that $(\mathfrak{a} : y) = A$; but this contradicts that $\sqrt{(\mathfrak{a} : y)}$ is prime. Therefore $(\mathfrak{a} : x) \neq \mathfrak{a}$, which means the LHR is a subset of the RHS. \Box