MATH200C, LECTURE 8

GOLSEFIDY

BASICS OF PRIMARY IDEALS

In the previous lecture we were proving:
Lemma 1. If $\mathfrak{m} \in \operatorname{Max}(A)$ and $\sqrt{\mathfrak{q}}=\mathfrak{m}$, then \mathfrak{q} is \mathfrak{m}-primary.
Proof. Since $\sqrt{\mathfrak{q}}=\bigcap_{\mathfrak{p} \in V(\mathfrak{q})} \mathfrak{p}=\mathfrak{m}$, we have that $\mathfrak{q} \subseteq \mathfrak{p} \Rightarrow \mathfrak{m} \subseteq \mathfrak{p}$. Since \mathfrak{m} is a maximal ideal, we have $V(\mathfrak{q})=\{\mathfrak{m}\}$.

Suppose $x \notin \mathfrak{q}$ and $x y \in \mathfrak{q}$. Consider

$$
(\mathfrak{q}: x):=\{a \in A \mid a x \in \mathfrak{q}\} .
$$

Then one can check that $(\mathfrak{q}: x)$ is an ideal of $A, \mathfrak{q} \subseteq(\mathfrak{q}: x)$ (alternatively $(\mathfrak{q}: x) \mid \mathfrak{q})$, and $y \in(\mathfrak{q}: x)$. Hence $V(\mathfrak{q}: x) \subseteq V(\mathfrak{q})=\{\mathfrak{m}\}$; and so either $(\mathfrak{q}: x)=A$ or $V((\mathfrak{q}: x))=\{\mathfrak{m}\}$. Since $x \notin \mathfrak{q}, 1 \notin(\mathfrak{q}: x)$. Thus $V((\mathfrak{q}: x))=\{\mathfrak{m}\}$, which implies that $y \in(\mathfrak{q}: x) \subseteq \mathfrak{m}$. This implies that \mathfrak{q} is primary.

As it has been mentioned earlier, primary ideals are supposed to play the role of powers of primes. The next lemma shows that when A is a PID these two concepts are equivalent.

Lemma 2. Suppose A is a PID. Then \mathfrak{q} is a non-zero primary ideal of A if and only if there is a prime element p of A and positive integer n such that $\mathfrak{q}=\left\langle p^{n}\right\rangle$.

Proof. (\Rightarrow) Suppose $\mathfrak{p}:=\sqrt{\mathfrak{q}}$. So $\mathfrak{p} \in \operatorname{Spec}(A)=\{0\} \cup \operatorname{Max}(A)$. Notice that $\mathfrak{p}=0$ if and only if \mathfrak{q}. If $\mathfrak{p} \neq 0$, then there is an irreducible element $p \in A$ such that $\mathfrak{p}=\langle p\rangle$; and in a PID an element is irreducible if and only if it is prime. Suppose $\mathfrak{q}=\langle a\rangle$. Since \mathfrak{p} is the smallest prime divisor of \mathfrak{q}, we have that, if ℓ is prime in A and $\ell \mid a$, then $p \mid \ell$; this means p is the only prime factor of a. Hence there is positive integer n such that $\langle a\rangle=\left\langle p^{n}\right\rangle$.
$(\Leftarrow) \sqrt{\left\langle p^{n}\right\rangle}=\langle p\rangle \in \operatorname{Max}(A)$. Hence by the previous lemma, $\left\langle p^{n}\right\rangle$ is primary.

As we have seen it the proof of Lemma 1, it is instrumental to understand $(\mathfrak{q}: x)$ to have a better understanding of \mathfrak{q}.

Lemma 3. Suppose \mathfrak{q} is \mathfrak{p}-primary. Then

$$
(\mathfrak{q}: x)= \begin{cases}A & \text { if } x \in \mathfrak{q} \\ \mathfrak{q} & \text { if } x \notin \mathfrak{p} \\ \mathfrak{p} \text {-primary } & \text { if } x \notin \mathfrak{q} .\end{cases}
$$

Proof. If $x \in \mathfrak{q}$, then it is clear that $(\mathfrak{q}: x)=A$.
Suppose $x \nexists n \mathfrak{p}$; then $y \in(\mathfrak{q}: x)$ implies that $x y \in \mathfrak{q}$. Since \mathfrak{q} is primary, $x y \in \mathfrak{q}$ and $x \notin \mathfrak{q}$ imply that $y \in \sqrt{\mathfrak{q}}=\mathfrak{p}$; this is a contradiction. Therefore $(\mathfrak{q}: x) \subseteq \mathfrak{q}$. And for any ideal \mathfrak{q} and any element x, we have $(\mathfrak{q}: x) \supseteq \mathfrak{q}$.

Suppose $x \notin \mathfrak{q}$. First we show that $\sqrt{(\mathfrak{q}: x)}=\mathfrak{p}$. Suppose $y \in \sqrt{(\mathfrak{q}: x)}$. Then for some positive integer $n, y^{n} x \in \mathfrak{q}$. Since \mathfrak{q} is a primary ideal, $x \mathfrak{q}$ and $x y^{n} \in \mathfrak{q}$ imply that, for some positive integer $m,\left(y^{n}\right)^{m} \in \mathfrak{q}$. This means $y \in \sqrt{\mathfrak{q}}=\mathfrak{p}$. Hence $\sqrt{(\mathfrak{q}: x)} \subseteq \sqrt{\mathfrak{q}}$. We always have $\sqrt{(\mathfrak{q}: x)} \supseteq \sqrt{\mathfrak{q}}$; and so $\sqrt{(\mathfrak{q}: x)}=\mathfrak{p}$.

Suppose $y z \in(\mathfrak{q}: x)$ and $y \notin \sqrt{(\mathfrak{q}: x)}=\mathfrak{p}$. Hence $(x z) y \in \mathfrak{q}$ and $y \notin \sqrt{\mathfrak{q}}$. As \mathfrak{q} is primary, we can deduce that $x z \in \mathfrak{q}$; this means $z \in(\mathfrak{q}: x)$. Therefore $(\mathfrak{q}: x)$ is \mathfrak{p}-primary.

Primary decomposition

Definition 4. An ideal \mathfrak{a} is called decomposable if there are finitely many primary ideals \mathfrak{q}_{i} such that $\mathfrak{a}=\bigcap_{i=1}^{n} \mathfrak{q}_{i}$.

A decomposition $\bigcap_{i=1}^{n} \mathfrak{q}_{i}$ is called reduced if
(1) for any i, $\mathfrak{q}_{i} \nsupseteq \bigcap_{j \neq i} \mathfrak{q}_{j}$,
(2) $\sqrt{\mathfrak{q}_{i}} \neq \sqrt{\mathfrak{q}_{j}}$ for $i \neq j$.

Lemma 5. (1) Suppose \mathfrak{q} and \mathfrak{q}^{\prime} are \mathfrak{p}-primary; then $\mathfrak{q} \cap \mathfrak{q}^{\prime}$ is \mathfrak{p}-primary.
(2) A decomposable ideal has a reduced decomposition.

Proof. (1) As $\mathfrak{q} \cap \mathfrak{q}^{\prime} \subseteq \mathfrak{q}, \sqrt{\mathfrak{q} \cap \mathfrak{q}^{\prime}} \subseteq \sqrt{\mathfrak{q}}=\mathfrak{p}$. If $x \in \mathfrak{p}$, then there are positive integers n, n^{\prime} such that $x^{n} \in \mathfrak{q}$ and $x^{n^{\prime}} \in \mathfrak{q}^{\prime}$. Hence for any $m \geq \max \left(n, n^{\prime}\right)$, $x^{m} \in \mathfrak{q} \cap \mathfrak{q}^{\prime} ;$ and so $x \in \sqrt{\mathfrak{q} \cap \mathfrak{q}^{\prime}}$. Thus $\sqrt{\mathfrak{q} \cap \mathfrak{q}^{\prime}}=\mathfrak{p}$. Suppose $x y \in \mathfrak{q} \cap \mathfrak{q}^{\prime}$ and $x \notin \sqrt{\mathfrak{q} \cap \mathfrak{q}^{\prime}}=\mathfrak{p} . x y \in \mathfrak{q}$ and $x \notin \mathfrak{p}=\sqrt{\mathfrak{q}}$ imply that $y \in \mathfrak{q}$; and similarly $x y \in \mathfrak{q}^{\prime}$ and $x \notin \mathfrak{p}=\sqrt{\mathfrak{q}^{\prime}}$ imply that $y \in \mathfrak{q}^{\prime}$. Thus $y \in \mathfrak{q} \cap \mathfrak{q}^{\prime}$; and claim follows.
(2) We start with a decomposition $\mathfrak{a}=\bigcap_{i=1}^{n} \mathfrak{q}_{i}$. Using part (1), we can make sure that $\sqrt{\mathfrak{q}}_{i} \neq \sqrt{\mathfrak{q}}_{j}$ if $i \neq j$. And then we can drop any unnecessary \mathfrak{q}_{i} if needed, to end up getting a reduced decomposition.

How much is a primary decomposition unique? In your HW assignment you will see examples of ideals with at least two primary decompositions. That said some parameters of a reduced primary decomposition of an ideal \mathfrak{a} just depends on \mathfrak{a}.

Theorem 6. Suppose $\bigcap_{i=1}^{n} \mathfrak{q}_{i}$ is a reduced primary decomposition of \mathfrak{a}, and $\mathfrak{p}_{i}:=$ $\sqrt{\mathfrak{q}_{i}}$. Then

$$
\left\{\mathfrak{p}_{1}, \ldots, \mathfrak{p}_{n}\right\}=\operatorname{Spec}(A) \cap\{\sqrt{(\mathfrak{a}: x)} \mid x \in A\}
$$

in particular $\left\{\mathfrak{p}_{1}, \ldots, \mathfrak{p}_{n}\right\}$ just depends on \mathfrak{a} and it is independent of the choice of a reduced primary decomposition.

If \mathfrak{a} is decomposable and $\bigcap_{i=1}^{n} \mathfrak{q}_{i}$ is a reduced primary decomposition, then $\left\{\sqrt{\mathfrak{q}_{1}}, \ldots, \sqrt{\mathfrak{q}_{n}}\right\}$ is called the set of primes associated with \mathfrak{a}; and we write $\operatorname{Ass}(\mathfrak{a}):=\left\{\sqrt{\mathfrak{q}_{1}}, \ldots, \sqrt{\mathfrak{q}_{n}}\right\}$.

Proof. We make notice of two things:

$$
\left(\bigcap_{i \in I} \mathfrak{b}_{i}: x\right)=\bigcap_{i \in I}\left(\mathfrak{b}_{i}: x\right) \text { and } \sqrt{\bigcap_{i=1}^{n} \mathfrak{b}_{i}}=\bigcap_{i=1}^{n} \sqrt{\mathfrak{b}_{i}} .
$$

Here is their proof:
$y \in\left(\bigcap_{i \in I} \mathfrak{b}_{i}: x\right) \Leftrightarrow x y \in \bigcap_{i \in I} \mathfrak{b}_{i} \Leftrightarrow \forall i \in I, x y \in \mathfrak{b}_{i} \Leftrightarrow \forall i \in I, y \in\left(\mathfrak{b}_{i}: x\right) \Leftrightarrow y \in \bigcap_{i \in I} \mathfrak{b}_{i}$.
Since $\bigcap_{i=1}^{n} \mathfrak{b}_{i} \subseteq \mathfrak{b}_{i}$ for any $i, \sqrt{\bigcap_{i=1}^{n}} \mathfrak{b}_{i} \subseteq \bigcap_{i=1}^{n} \sqrt{\mathfrak{b}_{i}}$; and
$y \in \bigcap_{i=1}^{n} \sqrt{\mathfrak{b}_{i}} \Rightarrow \forall i, y \in \sqrt{\mathfrak{b}_{i}} \Rightarrow \forall i, \exists n_{i} \in \mathbb{Z}^{+}, y^{n_{i}} \in \mathfrak{b}_{i} \Rightarrow y^{\max _{i}\left(n_{i}\right)} \in \bigcap_{i=1}^{n} \mathfrak{b}_{i} \Rightarrow y \in \sqrt{\bigcap_{i=1}^{n} \mathfrak{b}_{i}}$.
Hence

$$
\begin{equation*}
\sqrt{(\mathfrak{a}: x)}=\sqrt{\left(\bigcap_{i=1}^{n} \mathfrak{q}_{i}: x\right)}=\bigcap_{i=1}^{n} \sqrt{\left(\mathfrak{q}_{i}: x\right)} . \tag{1}
\end{equation*}
$$

By the Lemma 3, $\sqrt{\left(\mathfrak{q}_{i}: x\right)}=A$ if $x \in \mathfrak{q}_{i}$ and $\sqrt{\left(\mathfrak{q}_{i}: x\right)}=\mathfrak{p}_{i}$ if $x \notin \mathfrak{q}_{i}$. Hence by (1) we have

$$
\sqrt{(\mathfrak{a}: x)}=\bigcap_{x \notin \mathfrak{q}_{i}} \mathfrak{p}_{i}
$$

with the understanding that if $x \in \bigcap_{i=1}^{n} \mathfrak{q}_{i}$, then the above intersection is A. Since \mathfrak{q}_{j} 's give us a reduced primary decomposition, there is $x_{i} \in \bigcap_{j \neq i} \mathfrak{q}_{j} \backslash \mathfrak{q}_{i}$. Then, by (1), $\sqrt{\left(\mathfrak{a}: x_{i}\right)}=\mathfrak{p}_{i}$. This means the RHS is a subset of the LHS in the statement of Theorem.

Suppose $\sqrt{(\mathfrak{a}: x)}=: \mathfrak{p}$ is a prime ideal. Then by (1), $\mathfrak{p}=\bigcap_{x \notin \mathfrak{q}_{i}} \mathfrak{p}_{i}$. Since \mathfrak{p} is prime, $\bigcap_{x \notin \mathfrak{q}_{i}} \mathfrak{p}_{i} \subseteq \mathfrak{p}$ implies that for some $i_{0}, x_{i_{0}} \notin \mathfrak{q}_{i_{0}}$ and $\mathfrak{p}_{i_{0}} \subseteq \mathfrak{p}$. Since $\mathfrak{p} \subseteq \bigcap_{x_{i} \notin \mathfrak{q}_{i}} \mathfrak{p}_{i} \subseteq \mathfrak{p}_{i_{0}}$, we have $\mathfrak{p} \subseteq \mathfrak{p}_{i_{0}}$. Altogether, we have $\mathfrak{p}=\mathfrak{p}_{i_{0}}$ for some i_{0}. This implies that the RHS is a subset of the LHS; and claim follows.

Proposition 7. Suppose \mathfrak{a} is decomposable. Then
(1) $\operatorname{Ass}(\mathfrak{a}) \subseteq V(\mathfrak{a})$.
(2) For any $\mathfrak{p} \in V(\mathfrak{a})$, there is $\mathfrak{p}^{\prime} \in \operatorname{Ass}(\mathfrak{a})$ such that $\mathfrak{p}^{\prime} \subseteq \mathfrak{p}$.
(3) The set of minimal elements of $\operatorname{Ass}(\mathfrak{a})$ with respect to inclusion is the same as the set of minimal elements of $V(\mathfrak{a})$ with respect to inclusion.

We deduce that, if \mathfrak{a} is decomposable, then $V(\mathfrak{a})$ has only finitely many minimal elements. We will prove later that if A is Noetherian, then any ideal is decomposable. This is similar to how we used a chain condition to prove that any element can be written as a product of irreducible elements in a Noetherian integral domian.

Proof. (1) Suppose $\bigcap_{i=1}^{n} \mathfrak{q}_{i}$ is a reduced primary decomposition of \mathfrak{a} and $\mathfrak{p}_{i}:=\sqrt{\mathfrak{q}_{i}}$. Then $\mathfrak{a} \subseteq \mathfrak{q}_{i} \subseteq \mathfrak{p}_{i}$ for any i; and so $\mathfrak{p}_{i} \in V(\mathfrak{a})$.
(2) For any $\mathfrak{p} \in V(\mathfrak{a})$, we have $\bigcap_{i=1}^{n} \mathfrak{q}_{i} \subseteq \mathfrak{p}$. Hence $\sqrt{\bigcap_{i=1}^{n} \mathfrak{q}_{i}} \subseteq \sqrt{\mathfrak{p}}$ which implies

$$
\bigcap_{i=1}^{n} \mathfrak{p}_{i}=\bigcap_{i=1}^{n} \sqrt{\mathfrak{q}_{i}} \subseteq \mathfrak{p} .
$$

Since \mathfrak{p} is prime, we have that $\mathfrak{p}_{i} \subseteq \mathfrak{p}$ for some i.
(3) Suppose \mathfrak{p} is a minimal element of $V(\mathfrak{a})$. By (2), there is $\mathfrak{p}^{\prime} \in \operatorname{Ass}(\mathfrak{a})$ such that $\mathfrak{p}^{\prime} \subseteq \mathfrak{p}$. As $\operatorname{Ass}(\mathfrak{a}) \subseteq V(\mathfrak{a})$ and \mathfrak{p} is minimal in $V(\mathfrak{a}), \mathfrak{p}^{\prime} \subseteq \mathfrak{p}$ implies that $\mathfrak{p}=\mathfrak{p}^{\prime}$. Since \mathfrak{p} is minimal in $V(\mathfrak{a}), \operatorname{Ass}(\mathfrak{a}) \subseteq V(\mathfrak{a})$, and $p f r \in \operatorname{Ass}(A), \mathfrak{p}$ is minimal in $\operatorname{Ass}(A)$. Hence
minimal in $V(\mathfrak{a})$ implies minimal in $\operatorname{Ass}(\mathfrak{a})$.
Suppose \mathfrak{p} is minimal in $\operatorname{Ass}(\mathfrak{a})$. And suppose to the contrary that \mathfrak{p} is not minimal in $V(\mathfrak{a})$. Then there is $\overline{\mathfrak{p}} \in V(\mathfrak{a})$ such that $\overline{\mathfrak{p}} \subsetneq \mathfrak{p}$. By part (2), there is $\mathfrak{p}^{\prime} \in \operatorname{Ass}(\mathfrak{a})$ such that $\mathfrak{p}^{\prime} \subseteq \overline{\mathfrak{p}}$. Thus

$$
\mathfrak{p}^{\prime} \subseteq \overline{\mathfrak{p}} \subsetneq \mathfrak{p}
$$

but $\mathfrak{p}^{\prime}, \mathfrak{p} \in \operatorname{Ass}(\mathfrak{a})$ and $\mathfrak{p}^{\prime} \subsetneq \mathfrak{p}$ contradict that \mathfrak{p} is minimal in $\operatorname{Ass}(\mathfrak{a})$. Therefore minimal in $V(\mathfrak{a})$ implies minimal in $V(\mathfrak{a})$;
and claim follows.
Proposition 8. Suppose \mathfrak{a} is decomposable. Then

$$
\bigcup_{\mathfrak{p} \in \operatorname{Ass}(\mathfrak{a})} \mathfrak{p}=\{x \in A \mid(\mathfrak{a}: x) \neq \mathfrak{a}\} .
$$

Notice that $\{x \in A \mid(0: x) \neq 0\}=D(A)$ is the set of zero-divisors of A. And so the above proposition implies $D(A)=\bigcup_{\mathfrak{p} \in \operatorname{Ass}(0)} \mathfrak{p}$ if 0 is decomposable.

Proof. Suppose $\bigcap_{i=1}^{n} \mathfrak{q}_{i}$ is a reduced primary decomposition of \mathfrak{a}. Then for any x, $(\mathfrak{a}: x)=\bigcap_{i=1}^{n}\left(\mathfrak{q}_{i}: x\right)$. So if $(\mathfrak{a}: x) \neq \mathfrak{a}$, then for some i we have that $\left(\mathfrak{q}_{i}: x\right) \neq \mathfrak{q}_{i}$. Therefore, by Lemma 3, $x \in \mathfrak{p}_{i}$. Hence the RHS is a subset of the LHS.

Suppose $x \in \mathfrak{p}_{i}$ for some i. Then by Theorem 6, there is $y \in A$ such that $\mathfrak{p}_{i}=\sqrt{(\mathfrak{a}: y)}$. So $x \in \sqrt{(\mathfrak{a}: y)}$; hence for some positive integer $n, x^{n} \in(\mathfrak{a}: y)$, which implies that $x^{n} y \in \mathfrak{a}$.

Now suppose to the contrary that $(\mathfrak{a}: x)=\mathfrak{a}$. In this case, we claim that $y \in \mathfrak{a}$. To show this suppose i is the smallest non-negative integer such that $x^{i} y \in \mathfrak{a}$. If $i=0$, we get the claim. If $i>0$, then $x\left(x^{i-1} y\right) \in \mathfrak{a}$ implies that $x^{i-1} y \in(\mathfrak{a}: x)=\mathfrak{a}$; and this contradicts the minimality of i. Hence $y \in \mathfrak{a}$, which implies that $(\mathfrak{a}: y)=A$; but this contradicts that $\sqrt{(\mathfrak{a}: y)}$ is prime. Therefore $(\mathfrak{a}: x) \neq \mathfrak{a}$, which means the LHR is a subset of the RHS.

