1 Homework 9.

1. Suppose M_{i} 's and N are A-modules, M_{3} is flat, and

$$
0 \rightarrow M_{1} \xrightarrow{f_{1}} M_{2} \xrightarrow{f_{2}} M_{3} \rightarrow 0
$$

is a SES. Prove that

$$
0 \rightarrow M_{1} \otimes_{A} N \xrightarrow{f_{1} \otimes i \mathrm{id}_{N}} M_{2} \otimes_{A} N \xrightarrow{f_{2} \otimes \mathrm{id}_{N}} M_{3} \otimes_{A} N \rightarrow 0
$$

is a SES.
(Hint. Argue that there exists a SES

$$
0 \rightarrow K \rightarrow F \rightarrow N \rightarrow 0
$$

such that F is a free A-module. Discuss why the following is a commutating diagram where all the rows and columns are exact.

Suppose $x \in M_{1} \otimes_{A} N$ is in the kernel of $f_{1} \otimes \mathrm{id}_{N}$. Then use the following diagram:

Start with red, deduce existence of green, get the violet part, continue with blue. Argue why $y=y^{\prime}$; and deduce that $x=0$.)
2. Suppose $0 \rightarrow M_{1} \rightarrow M_{2} \rightarrow M_{3} \rightarrow 0$ is a SES of A-modules and M_{3} is flat. Prove that M_{1} is flat if and only if M_{2} is flat.
(Hint. Use the previous problem and the Short Five Lemma.)
3. Suppose E / F is a field extension, $\alpha \in E$, and $[F[\alpha]: F]$ is odd. Prove that $F\left[\alpha^{2}\right]=F[\alpha]$.
4. Suppose a_{1}, \ldots, a_{n} are positive rational numbers. Prove that $\sqrt[3]{2}$ is not in $\mathbb{Q}\left[\sqrt{a_{1}}, \ldots, \sqrt{a_{n}}\right]$.
5. Suppose $E \subseteq \mathbb{C}$ is a splitting field of $x^{p}-2$ over \mathbb{Q} where p is an odd prime number.
(a) Prove that $E=\mathbb{Q}\left[\sqrt[p]{2}, \zeta_{p}\right]$ where $\zeta_{p}:=e^{2 \pi i / p}$.
(b) Prove that $[E: \mathbb{Q}]=p(p-1)$.
.(Hint. Notice that $[E: \mathbb{Q}]$ is a multiple of $\left[\mathbb{Q}\left[\zeta_{p}\right]: \mathbb{Q}\right]$ and $[\mathbb{Q}[\sqrt[p]{2}]: \mathbb{Q}]$. Argue that $\left[\mathbb{Q}\left[\zeta_{p}\right]: \mathbb{Q}\right]=p-1$ and $[\mathbb{Q}[\sqrt[p]{2}]: \mathbb{Q}]=p$.)
6. Suppose E is a splitting field of $f(x) \in F[x]$ over F.
(a) Prove that if $\operatorname{gcd}\left(f, f^{\prime}\right) \neq 1$, then $E \otimes_{F} F[x] /\langle f\rangle$ has a non-zero nilpotent element.
(b) Prove that if $\operatorname{gcd}\left(f, f^{\prime}\right)=1$, then

$$
E \otimes_{F}(F[x] /\langle f\rangle) \simeq \underbrace{E \oplus \cdots \oplus E}_{\operatorname{deg} f \text {-times }}
$$

7. Suppose p is an odd prime, and $a \in \mathbb{F}_{p}^{\times}$. Prove that $x^{p}-x+a$ is irreducible in $\mathbb{F}_{p}[x]$.
(Hint. Let E be a splitting field of $x^{p}-x+a$ over \mathbb{F}_{p}. Let $\alpha \in E$ be a zero of $x^{p}-x+a$. Prove that $\alpha+i$ is a zero of $x^{p}-x+a$ for every $i \in \mathbb{F}_{p}$, and deduce that

$$
x^{p}-x+a=\prod_{i \in \mathbb{F}_{p}}(x-\alpha-i)
$$

Notice that $m_{\alpha, \mathbb{F}_{p}}(x)$ divides $x^{p}-x+a$, and consider the coefficient of x^{d-1} in $m_{\alpha, \mathbb{F}_{p}}(x)$ and show that $\operatorname{deg} m_{\alpha, \mathbb{F}_{p}}=p$.)

