1 Homework 8.

1. (Yoneda's lemma) Suppose \underline{C} is a locally small category, $a \in \operatorname{Obj}(\underline{C})$,

$$
h_{a}: \underline{C} \rightarrow \underline{\text { Set }}
$$

 the class of all natural transformations from h_{a} to F.
(a) Prove that the following is a bijection:

$$
\theta_{a}: \operatorname{Nat}\left(h_{a}, F\right) \rightarrow F(a), \quad \theta(\eta):=\eta_{a}\left(1_{a}\right)
$$

(b) For $f \in \operatorname{Hom}_{\underline{C}}\left(a, a^{\prime}\right)$, let $\widehat{f}: h_{a}^{\prime} \rightarrow h_{a}$ be

$$
\widehat{f}_{b}\left(a^{\prime} \xrightarrow{g} b\right):=a \xrightarrow{g \circ f} b .
$$

Prove that \widehat{f} is a natural transformation.
(c) Prove that θ_{a} is a natural bijection; that means, if $f \in \operatorname{Hom}_{\underline{C}}\left(a, a^{\prime}\right)$, then the following is a commuting diagram

$$
\begin{array}{cc}
\operatorname{Nat}\left(h_{a}, F\right) \xrightarrow{\theta_{a}} F(a) \\
\psi(f) \downarrow \\
\operatorname{Nat}\left(h_{a^{\prime}}, F\right) \xrightarrow{\theta_{a^{\prime}}} F \underset{ }{\downarrow} F\left(a^{\prime}\right)
\end{array}
$$

where for every $b \in \operatorname{Obj}(\underline{C})$,

$$
\psi(f)(\eta):=\eta \circ \widehat{f}
$$

2. Suppose D is a local Noetherian integral domain.
(a) Prove that every submodule of a finitely generated projective D-module is projective if and only if D is a PID.
(b) Find a local Noetherian integral domain which is not a PID.
(c) Show that a submodule of a finitely generated projective module is not necessarily projective.
(Hint. Use two results from last week (1) submodule of a finitely generated free D-module is free if and only if D is a PID, (2) finitely generated projective modules of a local Noetherian ring are free.)
3. Suppose A is a unital commutative ring, and M is an A-module. Let $T_{M}: \underline{A-\bmod } \rightarrow \underline{A-\bmod }, T_{M}(N):=M \otimes_{A} N \quad$ and $\quad T_{M}(f):=\operatorname{id}_{M} \otimes f$, for $f \in \operatorname{Hom}_{A}\left(N, N^{\prime}\right)$.
(a) Prove that T_{M} is a functor.
(b) Prove that there exists a natural isomorphism between $T_{M_{1}} \circ T_{M_{2}}$ and $T_{M_{1} \otimes_{A} M_{2}}$.
(Hint. For $x_{1} \in M_{1}$, let

$$
f_{x_{1}}: M_{2} \times N \rightarrow\left(M_{1} \otimes_{A} M_{2}\right) \otimes N, \quad f_{x_{1}}\left(x_{2}, y\right):=\left(x_{1} \otimes x_{2}\right) \otimes y
$$

Prove that $f_{x_{1}}$ is A-bilinear. Deduce that there exists an A-module homomorphism

$$
\phi_{x_{1}}: M_{2} \otimes N \rightarrow\left(M_{1} \otimes_{A} M_{2}\right) \otimes N
$$

such that

$$
\phi_{x_{1}}\left(x_{2} \otimes y\right)=\left(x_{1} \otimes x_{2}\right) \otimes y
$$

Let

$$
f: M_{1} \times\left(M_{2} \otimes N\right) \rightarrow\left(M_{1} \otimes_{A} M_{2}\right) \otimes N, \quad f\left(x_{1}, z\right):=\phi_{x_{1}}(z)
$$

Prove that f is A-bilinear. Deduce that there exists an A-module homomorphism

$$
\phi: M_{1} \otimes_{A}\left(M_{2} \otimes_{A} N\right) \rightarrow\left(M_{1} \otimes_{A} M_{2}\right) \otimes N
$$

such that

$$
\phi\left(x_{1} \otimes z\right)=f\left(x_{1}, z\right)
$$

in particular, for every $x_{1} \in M_{1}, x_{2} \in M_{2}$, and $y \in N$,

$$
\phi\left(x_{1} \otimes\left(x_{2} \otimes y\right)\right)=\left(x_{1} \otimes x_{2}\right) \otimes y
$$

Similarly there exists an A-module homomorphism

$$
\psi:\left(M_{1} \otimes_{A} M_{2}\right) \otimes N \rightarrow M_{1} \otimes_{A}\left(M_{2} \otimes_{A} N\right)
$$

such that

$$
\psi\left(\left(x_{1} \otimes x_{2}\right) \otimes y\right)=x_{1} \otimes\left(x_{2} \otimes y\right)
$$

Deduce that ϕ and ψ are inverse of each other. Convince yourself that this is a natural isomorphism. You do not need to include that in your solution.)
(Remark. We say that $M_{1} \otimes_{A}\left(M_{2} \otimes_{A} N\right)$ and $\left(M_{1} \otimes_{A} M_{2}\right) \otimes_{A} N$ are naturally isomorphic.)
4. Suppose A is a unital commutative ring and M, N_{1}, and N_{2} are A-modules.
(a) Prove that there exists an A-module isomorphism

$$
\phi: M \otimes_{A}\left(N_{1} \oplus N_{2}\right) \rightarrow\left(M \otimes_{A} N_{1}\right) \oplus\left(M \otimes_{A} N_{2}\right)
$$

such that $\phi\left(x \otimes\left(y_{1}, y_{2}\right)\right)=\left(x \otimes y_{1}, x \otimes y_{2}\right)$.
(b) Prove that the following is a splitting SES

$$
0 \rightarrow M \otimes_{A} N_{1} \xrightarrow{\mathrm{id}_{M} \otimes j_{1}} M \otimes_{A}\left(N_{1} \oplus N_{2}\right) \xrightarrow{\mathrm{id}_{M} \otimes p_{2}} M \otimes_{A} N_{2} \rightarrow 0,
$$

where $j_{1}: N_{1} \rightarrow N_{1} \oplus N_{2}, \quad j_{1}\left(x_{1}\right):=\left(x_{1}, 0\right)$ and

$$
p_{2}: N_{1} \oplus N_{2} \rightarrow N_{2}, \quad p_{2}\left(x_{1}, x_{2}\right):=x_{2} .
$$

(Hint. Let
$f: M \times\left(N_{1} \oplus N_{2}\right) \rightarrow\left(M \otimes_{A} N_{1}\right) \oplus\left(M \otimes_{A} N_{2}\right), f\left(x,\left(y_{1}, y_{2}\right)\right):=\left(x \otimes y_{1}, x \otimes y_{2}\right)$.
Notice that f is an A-bilinear map. Deduce that there exists an A-module homomorphism, as given in the statement of the problem. Let

$$
\begin{aligned}
& \psi:\left(M \otimes_{A} N_{1}\right) \oplus\left(M \otimes_{A} N_{2}\right) \rightarrow M \otimes_{A}\left(N_{1} \oplus N_{2}\right), \\
& \psi\left(z_{1}, z_{2}\right):=\left(\operatorname{id}_{M} \otimes j_{1}\right)\left(z_{1}\right)+\left(\operatorname{id}_{M} \otimes j_{2}\right)\left(z_{2}\right) .
\end{aligned}
$$

Then ψ is an A-module homomorphism. Check that

$$
\psi\left(\phi\left(x \otimes\left(y_{1}, y_{2}\right)\right)\right)=x \otimes\left(y_{1}, y_{2}\right),
$$

and deduce that $\psi \circ \phi$ is identity. Similarly, you can obtain that $\phi \circ \psi$ is identity.

Use these isomorphisms, to show that the given sequence is isomorphic to the splitting SES

$$
\left.0 \rightarrow M \otimes_{A} N_{1} \rightarrow\left(M \otimes_{A} N_{1}\right) \oplus\left(M \otimes_{A} N_{2}\right) \rightarrow M \otimes_{A} N_{2} \rightarrow 0 .\right)
$$

5. (You do not have to write anything for this problem; only justify and understand all the statements. This extends the result of the previous problem, and it is a useful result to have in your toolbox.)

For two functors F_{1} and F_{2}, we say $F_{1} \simeq F_{2}$ if there exists a natural isomorphism $\eta: F_{1} \rightarrow F_{2}$. Suppose $\left\{M_{i}\right\}_{i \in I}$ is a family of A-modules and N is an A-module.
(a) Suppose $\left\{F_{i}\right\}_{i \in I}$ is a family of functors from \underline{A}-mod to itself. Define the functor $\prod_{i \in I} F_{i}$.
(b) Prove that

$$
\prod_{i \in I} h_{M_{i}} \simeq h_{\oplus_{i \in I} M_{i}} .
$$

(c) Justify why we have

$$
\begin{aligned}
h_{\oplus_{i \in I} N \otimes_{A} M_{i}} & \simeq \prod_{i \in I} h_{N \otimes_{A} M_{i}} \simeq \prod_{i \in I}\left(h_{M_{i}} \circ h_{N}\right) \\
& \simeq\left(\prod_{i \in I} h_{M_{i}}\right) \circ h_{N} \simeq h_{\oplus_{i \in I} M_{i}} \circ h_{N} \\
& \simeq h_{N \otimes_{A}\left(\oplus_{i \in I} M_{i}\right)} .
\end{aligned}
$$

(d) Prove that $\bigoplus_{i \in I}\left(N \otimes_{A} M_{i}\right) \simeq N \otimes_{A}\left(\bigoplus_{i \in I} M_{i}\right)$ as A-modules.
6. Suppose A is a local unital commutative ring and K is a field.
(a) Suppose V and W are two K-vector spaces. Prove that

$$
\operatorname{dim}_{K}\left(V \otimes_{K} W\right)=\left(\operatorname{dim}_{K} V\right)\left(\operatorname{dim}_{K} W\right)
$$

(Hint. Use problem 5.)
(b) Suppose M and N are finitely generated A-modules, and $M \otimes_{A} N=0$.

Prove that either $M=0$ or $N=0$.
(Hint. Suppose $\operatorname{Max}(A)=\{\mathfrak{m}\}$. Let $k:=A / \mathfrak{m}$. Argue

$$
M / \mathfrak{m} M \simeq M \otimes_{A} k \quad \text { and } \quad N / \mathfrak{m} N \simeq N \otimes_{A} k .
$$

Show that $(M / \mathfrak{m} M) \otimes_{k}(N / \mathfrak{m} N)=0$. Use Nakayama's lemma. $)$
(Remark. Notice that $\mathbb{Z} / 2 \mathbb{Z} \otimes_{\mathbb{Z}} \mathbb{Z} / 3 \mathbb{Z}=0$ and so it is crucial that A is local. For an arbitrary ring A, we deduce that $M \otimes_{A} N=0$ implies for any $\mathfrak{p} \in \operatorname{Spec} A$ either $M_{\mathfrak{p}}=0$ or $N_{\mathfrak{p}}=0$.)
7. Suppose A is a unital commutative ring, $S \subseteq A$ is a multiplicatively closed subset, and M is an A-module.
(a) Convince yourself that localizing defines an exact functor from A-mod to $\underline{S^{-1} A \text {-mod. (You do not need to write any argument for this part.) }}$
(b) Prove that $S^{-1} A \otimes_{A} M \simeq S^{-1} M$; deduce that $S^{-1} A$ is a flat A-module.
(c) Prove that, if M is a flat A-module, then $S^{-1} M$ is a flat $S^{-1} A$-module.
(d) Prove that $\frac{x_{1} \otimes x_{2}}{1} \mapsto \frac{x_{1}}{1} \otimes \frac{x_{2}}{1}$ gives us a well-defined $S^{-1} A$-module isomorphism

$$
S^{-1}\left(M_{1} \otimes_{A} M_{2}\right) \xrightarrow{\sim} S^{-1} M_{1} \otimes_{S^{-1} A} S^{-1} M_{2} .
$$

(e) Prove that, if $M_{\mathfrak{p}}$ is a flat $A_{\mathfrak{p}}$-module for every $\mathfrak{p} \in \operatorname{Spec}(A)$, then M is flat. (Hint: look at HW5, localizing a module.)

